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Summary

The original focus of task 1.4 was to develop techniques bichvimultimodal input streams can be
integrated into SLMs. Analysis of a Wizard of Oz data collettshowed that integrated multimodal in-
teraction of users with the dialogues system occured only rgely. In these rare cases, when speech
and clicks were used in an integrated way, clicks mostly mtseconds before or after the speech, there
were only few cases where both overlapped. This leads todhelusion, that the statistical language
model (SLM) of a speech recogniser is not the right placerftagrating multimodal inputs. It should be
done at a later stage. The results of task 1.3 suggest timgt 85Ms instead of grammars leads to superior
speech recognition performance. If SLMs are used in a dsystem along with late integration of multi-
modal acts, robust semantic parsing of speech recognititpubis necessary. With the agreement of the
reviewers, the scope of WP1.4 was widened to include rolamsaatic decoding. In this deliverable, we
explore methods to create statistical semantic parserglogde act taggers by generating corpora from
application grammars using the Grammatical Framework. nestigate approaches based on memory
based learning, an n-gram based semantic parser and therHiddtor State Model. We create all statis-
tical models directly from our interpretation grammars anthpare f-measures or accuracies of semantic
concepts or dialogue acts. The results show an importambement of statistical methods over classical
grammars. Our experiments were carried out in English omigstanformation task and in Swedish on a
MP3 player interface. For both sites involved in this detalde the results of this deliverable have great
influence on the decision of which robust semantic parsenihiinclude in their final system.
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Chapter 1

Introduction

This document reports mainly about parsing the output ofishizal Language Models (SLMs). The
original focus of task 1.4 was to develop techniques by whicittimodal input streams can be integrated
into SLMs. As already detailed in status report T1.4s2 [YS|V@nalysis of the SACTI multimodal
Wizard Of Oz data collections lead to the following results:

e Less than 2.5% of the data collected feature integratedmmudial dialog acts.
e Only 8 of the 36 participants used these acts.

e The time relation between speech and clicks is not on the vewal, but rather on the utterance
level.

This suggests integration of multimodal acts should pedfigrnot be done in the language model compo-
nent of the recogniser, but at a later stage. A grammar basegmiser has the advantage that semantic
decoding can already be done inside the recognition gramrharresults of T1.3 [WJRY06] suggest that
using SLMs instead of grammars leads to superior speeclymiiwm performance. However, if SLMs
are to be used in a dialog system, and late integration ofimmaidtal acts is preferred, there exists the issue
of parsing grammatically less restricted speech recagnibutput. Robust semantic parsing remains an
active research problem even for unimodal input and formarady for further progress with the cur-
rent systems in Cambridge and Gothenburg. With the agreteofi¢he reviewers, the scope of WP1.4
was widened to include semantic decoding, following theconie of task 1.3. As status report T1.4s2
[YSWO5] already contains a detailed discussion on the prolf integrating multimodal input streams
in SLMs, this document will concentrate on semantic deapdin

1.1 Semantic Modelling of SLM-based ASR output

Taking the results of deliverable D1.3 [WJRYO06] seriouslhgans that speech recognisers should use
statistical language models instead of recognition grarama such a system architecture it is necessary
to introduce a new component, a semantic decoder, that caertaiser speech (orthographic form) into
dialogue acts the system can process. With a grammar thiigly a trivial operation or a function of
the grammar itself. When using output from a SLM-based ASSResy, the problem of parsing the input
into a dialogue act presents a significant challenge.

2
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The Cambridge group researches statistical parsers letaeswould fit best into the architecture of a
fully statistical dialogue system. The advantage of arrelytstatistical approach is that dialogue acts and
probabilities are passed to the dialogue manager and tlegdeamanager can take these probabilities
into account when deciding on which action to choose next.

The Gothenburg group is investigating statistical parsarthe following reason: If a statistical language
model is used instead of a recognition grammar, then a lob@kpected expressions will be in the speech
recognition output. Grammatically unconstrained striags not well suited to be parsed by a grammar.
This means that using robust statistical parsers insteactlafssical GF parser for semantic decoding is a
good alternative.

Figure 1.1: Speech understanding component consisting of an ATK speecfniser using
SLMs and a Hidden Vector State semantic parser (HVS).

Speech Understanding Agent

A
: N-best list
Seﬁech Auz|  of hypothesised
— / A,, user dialogue acts

Parser generates

ATK sends N-best dialogue acts
word lists from lattices A | continuously

Figure 1.1 shows an example of how a semantic parser is atezfjwith a speech recogniser to form a
speech understanding component. Here the ATK recogniserOg] passes n-best lists to the semantic
parser realised as a Hidden Vector State Model. The speatgrsianding component then passes a list
of dialogue acts to the dialogue manager.

1.2 Existing Rule Based and Statistical Approaches

Existing approaches for semantic parsing can be groupeddntanuum between rule based, deterministic
models and statistical models.

Rule-based systems typically require hand-crafted ruleislware integrated in grammars that are de-
signed to parse full sentences or chunks of sentences. Theprmminent of these are MIT’s TINA
[Sen92], CMU’'s PHOENIX [WI196], SRI's Gemini [DMAM94] systas. Sometimes these rule based
systems are then augmented with corpus statistics to get lbesults. Whilst good performance is often
achieved using this approach, rule-based parsers are Ihperpensive to build and hard to transplant
from one application to another. Furthermore, they cahdggrade badly in the face of high speech recog-
nition error rates and unexpected or ill-formed input secés. In TALK we have used the Grammatical
Framework (GF) [Ran04] both to produce recognition gransnasud SLMs as well as for semantic pars-
ing. However, at the current time there are no possibilittegobust parsing within GF which would be
needed for an optimal performance when using SLMs for ratiogn To implement robust parsing in GF
is beyond the scope of the TALK project and constitutes aarebearea of its own. However, in Chapter
4 we propose different possibilities for achieving robuestging using GF grammars in the future.
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The statistical approach seeks to automatically traingpafsom semantically annotated sentences in the
hope of building more robust decoders with less effort. Atyesxample is AT&T's finite state semantic
tagger in which a HMM is used to assign semantic concepts t@svg?TG 92]. More sophisticated
models have been proposed since that can handle hierdrshigeture such as the hierarchical Hidden
Understanding Model [SMSM97] and the hierarchical Hiddearkdv Model [FST98]. These models
typically require every training utterance to be semaiiticannotated. More recently the Hidden Vec-
tor State model has been proposed as a constrained hiearofodel which does not require detailed
semantic annotation to train [HY05]

An alternative approach treats semantic decoding as @lstiaiward pattern recognition problem. The
Y-Clustering parser [YYO06] classifies each input sentemce set of exemplar sentences, which were
automatically selected from a training corpus using a seetelustering technique.

In this report one of the existing techniques, the HVS modetompared with a new model based on
a tagged statistical language model. The particular fo€tsi® study is the effectiveness of the models
when bootstrapped from an automatically generated corpus.

Dialogue act (move) tagging has been of great interest ynivstirder to be able to annotate corpora with
dialogue acts automatically [SCVS98] but also in some cesdecode or even predict the dialogue move
of the user’s last utterance in dialogue systems [S@B. Dialogue move tagging has been explored with
different statistical and machine learning techniques\{S@8, SCB 00, LdBKCO04]. The best dialogue
act tagging models have obtained an accuracy of 70% showinglifficulty of the task of classifying
utterances to dialogue acts [PM98]. As different studiesdiferent types and different amount of dia-
logue acts it is hard to draw any comparative conclusions fpoevious work. A survey of related work
shows that the predictors used for dialogue move taggirmgvalsy. In [PB96] the prediction is dependent
on the system’s last dialogue act and the range of user acesponding to each system act seems to be
chosen manually beforehand. In the Verbmobil project [RBBKthe next dialogue act was predicted by
using statistical language models holding a dialogue hisibprevious dialogue acts. They also included
directional information by including the speaker as a tageylused annotated logs for training and were
able to classify 18 distinct dialogue acts with an accurdc§086. In three subsequent studies shown in
[WPI99, PKIW98, PM98] dialogue move prediction was donewsitatistical language models trained on
annotated dialogues (the MapTask Corpus) experimentitigdifferent predictors such as e.g. intonation
features of the user utterance or game information apart ffialogue move history and speaker informa-
tion. In [PM98] twelve distinct moves were classified withaturacy of 57% by using handcoded game
information.

In this report we will use data generated from grammars whelans that we need not put any effort
on manual tagging to obtain annotated data and at the sament@rcan assure that our data includes
all possible dialogue moves that we want to be able to decoder domain. However, we will not be
able to use any additional features. Another distinctiomwfwork is that we are not tagging abstract
dialogue moves such as answers, requests etc. as in prexookibut we are tagging combination of dia-
logue moves and their slots i.e. dialogue moves such as &fgmwup(abba))” or "request(playlistdd),
answer(song(dancing,queen))”. This is a much harder task.

1.3 Report organisation

The main focus of our experiments was to investigate if stiaél semantic parsers can be trained with
corpora generated by GF task grammars. The experimentscaeied out in two different tasks, a MP3
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player interface and a tourist information system. The lasguages were Swedish and English. Chapter
2 details results on dialogue act tagging using memory baseding. These experiments were carried out
in Swedish on a MP3 player domain. The used dialogue act taggevide only a shallow annotation.
They can not capture deep semantic hierarchies. Chaptentdiit® work on semantic parsing for an
English dialogue system designed for a tourist informati@mk. The semantic models that are investigated
are the Hidden Vector State model and a novel n-gram bassdrp&oth models are hierarchical semantic
parsers using a theoretical model that is capable of disicmyéull semantic trees. Both models were
evaluated against deep (full tree) and shallow (leave nautigeria. Finally, Chapter 4 shortly summarises
the results of both investigations.

Version: 1.0 (Final) Distribution: Public



Chapter 2

Bootstrapping a Dialogue Move Tagger

In D1.3 [WJRY06] we showed how to bootstrap statistical leamge models (SLMs) by generating train-
ing corpora from GF grammars. This resulted in an enhancedcsprecognition performance for the
DJ-GoDiS application as shown in [Jon06]. However, usingomstrained SLMs instead of restricted
recognition grammars means that the output from the spestgniser will also be unconstrained and
thus the GF grammar will not always be able to parse the ASRubuOur preliminary strategy for han-
dling this problem in the DJ-GoDiS domain was to use a simple-based parser written in Prolog that
looks for keywords and phrases and maps them to dialoguesiipst as was done before the integration
of GF and GoDiS, see [Lar02]). However, such a parser is larddintain and doubles the grammar
work. In this chapter, we will therefore show how we have bBtrapped a dialogue move tagger using
the same methodology as in D1.3. We have trained two diffatetiogue move taggers from a corpus
generated from GF using memory based machine learning.

2.1 Training and Test Data

The main difference with our tagger approach in comparisith previous work is that we have trained
our taggers on a corpus generated from a GF grammar [Ran@dmwfor the domain where all utter-
ances appear together with the dialogue move(s) they sheulterpreted as. In this experiment we have
focused on the GoDiS application DJ-GoDiS which is a multieddVIP3 player that lets users control
their Internet audio player with the voice or by graphicgdiih[EABT06]. The user can among other
things change settings, choose stations or songs to plagatecplaylists. The data used for the experi-
ment comes from corpora generated automatically by GF fl@rSwedish GF grammar written for the
dialogue system DJ-GoDiS reported in [LBQ5].

The number of abstract dialogue moves in GoDiS is limitedemguests, answers, ask moves, greet-
ings, quit moves and moves involving Interactive CommuiimcaManagement (ICMs), e.g. grounding
moves, as reported in [Lar02] and in [LBG5]. In DJ-GoDiS we have 6 different types of answers (e.qg.
answer(song(X))  where X can be any of the songs in the MP3player), 3 differgmes of ask moves
and 18 different requests. In GoDiS an utterance and a dialogove is not necessarily a one-to-one
pair but an utterance can be interpreted as several dialogues i.e. conveying several concepts. This
means that the number of possible dialogue move combirsatjets very large. The GF grammar that we
have used distinguishes 3873 dialogue move combinatiashi@ds 55702 utterances representing these
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which implies that we have 55702 training instances markiga avalogue moves in our training corpus.
In this study we have focused on the Swedish grammar and gfede$wedish utterances. However, the
English grammar would have given the same dialogue move ic@atimns as the grammars have a com-
mon abstract level. A corpus fragment generated with GF faorearly version of the English grammar
follows below to show the format of the original training dathere all dialogue moves were generated
together with the utterances the grammar covered for thesesn

[request( playlist_add ), answer(item([the,final,count down))),
answer(group([europe]))]

I want to add the final countdown with europe please

i would like to add the final countdown with europe please
i want to add the final countdown with europe

i would like to add the final countdown with europe

add the final countdown with europe please

add the final countdown with europe

i want to add europe with the final countdown please

i would like to add europe with the final countdown please
i want to add europe with the final countdown

i would like to add europe with the final countdown

add europe with the final countdown please

add europe with the final countdown

Our taggers have been tested on a test set of 263 transcmiltednmotated Swedish user utterances
including both unknown words and unknown constructionsesehuser utterances were collected with
the DJ-GoDIS system and thus represent the type of input argendecoder for this domain could be
exposed to. The utterances vary in length and range fromesiomg-word utterances (e.g. yes answers) to
more complicated twelve word utterances. An excerpt froentéist set with dialogue move tags is found
below. The test set was tagged manually with dialogue moydw/t annotators with an inter-annotator
agreement of kappa 0.99 [Car96].

jag vill fr ~ aga om vilka | atar han har gjort
(Eng. i want to ask about what songs he has made)
ask(x"songs_by_artist(x))

| 4gg till sommaren ar kort med tomas ledin

(Eng. add sommaren ar kort with tomas ledin)
request(playlist_add) + answer(item(J[sommaren, ar,kort])) +
answer(group([tomas,ledin]))

sommaren ar kort

(A song title)
answer(item([sommaren, ar,kort]

Version: 1.0 (Final) Distribution: Public
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2.2 Dialogue Move Tagging

We have built two different taggers to simulate a more rolest of parsing. Both were trained on the
corpus generated from GF where all utterances appear trgeith the dialogue move(s) they should
be interpreted as. The first tagger is utterance-based alidmith the memory-based learner TIMBL

[DZvdSvdBO01]. Although, this seemed to work successfully epted for building a second tagger with
MBT [DZvdBvdSO03], as it gave us a tagger we could use direatlsun-time and that would make it able
to give us dialogue move scores as explained below.

2.2.1 Utterance-based Dialogue Move Classifier

This tagger or dialogue move classifier was trained on 55%t#amnces represented as bag of words
(BoW) and additionally the length of the utterance whichatat gives a vector of 237 features. The
BoW is as big as the corpus vocabulary and holds a positiordch word which will be marked as
1 when the word appears in the utterance. A feature vectangbearepresenting a request to play a
specific song (vara vanner) by a certain artist (jakob hatlrfollows below where the first number
means that the utterance consists of ten words, and that dhdsveorrespond to the positions in the
BoW marked with 1 and should be interpreted as the dialogueertagysrequest(start_specific) ,
answer(item([vara v anner])) , answer(group(fjakob hellmany))

10,[b orjatoppniv. a,gl dmma,man,kan,ha,hj alp,f &avbryta,musiken,
st ang,stopp,stoppa,visa,bak at,igen,spelningen, ateruppta,allt,
listan,rensa,h 0j,h 0ja,viss,speciell,start,b orjan,fr  an,paus,
pausa,ljudet,s ank,volymen,s  anka,radiostation,v alja,spelaren,
prata,fram  at,spola,avsluta,sluta,hejd a,h orde,f orl atva,sa,
urs akta,jaha,visst,ok,okej,inte,hall a.tiena,hej,nu,spelas,
heter,japp,jajamen,ja,nepp,n a,nej,ettan,h oger,v anster,skifta,
mitten,balansen, andra,bort,ta,tredje tionde,sj atte,sjunde,
andra,nionde,fj ardef oOrstafemte,  attonde,f ©Oreg aende,n asta,
den,tre,tio,sex,sju,| at,nio,fyra,fem,nummer,lyssna,h ora,l,
spela,radio,rant,stationen,gunfire,digital| agg,spellistan,1,1,1,
tilll  agga,l aten,skrivit,de,gjort,han,fr aga,n agonting,  atar,
vilka,artisten,har,vad,ytan,under,moln,ett,segla,vi ngar,grader,
hundra, atta,tro,ska,vindarna,diamanter,vill,g ora,f arvetvem,
harvartv  atv,p a,flickorna,tungak arlekens,kr  akan,ochflickan,
hornet,runt,himlen,du,som,precis,om,h all,landskap, Oppna,finns,
det,vargar,jagad,hellre,blir,1,mig,ih ag,kom,rummet,i,  angeln,
sarah,kort,  ar,sommaren,1,1,hj arta,mitt,av,del,en,solglas ogon,
lundell,ulf leva,di,svenningsson,uno,lemarc,peter,] ackson,
michael,nilsson,rickfors,madonna,wiehe,mikael,ryde, annelie,
lakejer,lustans,gr 0n,ebba,1,1,ledin,tomas,tider,gyllene,imperiet,
freda,dahlgren,eva,eldkvarn,orup,kent,irma,d 0d,docent,isaksson,
patrik,ekdahl,lisa,winnerb ack,lars,orkester kaspers,bo,1,undantag],
[request(start_specific),answer(item([vara,v anner])),
answer(group([jakob,hellman))].

Version: 1.0 (Final) Distribution: Public
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We tested the tagger against our test set of manually tagggrdutterances from real DJ-GoDiS interac-
tions. The tagger showed a 79% accuracy on the test set whérevdre exact matches (i.e. existed in
the training corpus and likewise in our original GF grammdaese exact matches could be seen as the
grammar coverage giving a 59% accuracy which means that veetieen able to boost the performance
getting a more robust interpreter by using the grammar gsutraining data. This means that we get
34% increase in tagging accuracy by using the bootstrammet (significant ap < .0001) instead of
the GF grammar. We get a more robust behaviour than with ggetaand is able to interpret unexpected
expressions that are similar to the training data. A closek bt the tagging results shows that the tagger
even manages to give a partly interpretation to utterama#sding unknown songs i.e. an utterance such
as "l want to add UNKNOWN?” will get the tagequest(playlist_add) . This means that the dialogue
manager will be able to take the dialogue a step forward. Woisld not be possible with the grammar
which would falil in giving any semantic interpretation oéthtterance at all.

However, this tagger does not take into account word ordeiclwmeans that "John saw Mary”
will be tagged the same way as "Mary saw John”. In our domais tiider does not really mat-
ter for cases like "Abba with Dancing Queen” or "Dancing Queeith Abba” (both interpreted as
answer(group(abba)) ,answer(song(dancing queen)) ) as long as we do not have artists or songs
with the same name. However, in many other domains, of cows@eed to be able to make this distinc-
tion. Simple cases can be solved by having an additional BBigoams (BoBi), where the bigram "John
saw” would have a position and would be marked in the first bas@ot in the second case where "Mary
saw” would be marked instead. For the moment the utteramc#¥s domain are simple enough to do
without this extension but a more advanced technique woeldgeded if you want to do more advanced
parsing.

A TIMBL classifier does not only give a class (in this case dagdjae move or dialogue move combination)
as output but can also give a confidence score for its choioe classifier could therefore be used to tag
utterances together with a confidence score given from TiNtBLthe choice of dialogue move tag. In
this way we could just reject dialogue moves with a confidesm®e which is too low and in that way
avoid some of the incorrect tags. Additional training datald be obtained from dialogue system logs
where DJ-GoDiS were run with the simple Prolog parser. Uslirgmaterial could improve the accuracy
even further. However, in this case we used the existingdsgsst data.

2.2.2 \Word-based Dialogue Move Tagger

The second tagger was generated with MBT (memory-basegtpfDZvdBvdS03]. The tagger genera-

tor MBT is normally used to develop part-of-speech (POSy¢ag. We have used it to be able to decide
what dialogue move a word in an utterance belongs to. Asitigidata we used the GF corpus con-
verted into a format where each line holds a word and a diglagave. The utterance “lagg till abba pa

spellistan” (Eng. add Abba to the playlist) is representetbfows:

<utt>

| agg request(playlist_add)

till request(playlist_add)

abba answer(group(abba))

pa request(playlist_add)
spellistan request(playlist_add)
<Jutt>

Version: 1.0 (Final) Distribution: Public
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We generated a tagger that for known words takes into ac¢auantags before the focus word
to be tagged and two words after. For unknown words the talggé&s at the previous tag and
at the first four letters of the focus word for clues. This neetirat the tagger can tag unknown
words correctly by identifying a known lemma (e.g. “lagd&hg. Add) if “lagg” (Eng. Add) is
known). This contextual feature set was chosen in a devetopphase. Enlarging the context
on either side when tagging known words did not give any im@neent but two words back and
two words ahead seemed to be optimal. For unknown words wweedsed looking at suffixes
but although suffixes normally are useful for the task of R&®Rying it did not seem to be very
useful for dialogue move tagging of Swedish words where timtent part of the words are more
important and is usually not placed in the end of the word.uistime the tagger can be fed with
utterances followed by the sentence delimigt> . The output of the Swedish phrase “jag vill
lagga till orup” (Eng. “I want to add Orup”) looks as follows

jag/request(playlist_add)
vill'request(playlist_add)
| aggal/request(playlist_add)
till/request(playlist_add)
orup/answer(group([orup]))

As seen, each word will get a dialogue move tag. Unknown wail&ilso get a tag but will be
indicated with // instead of /. The tagger has been testeti@mtanually dialogue move tagged
test set of transcribed user utterances which includech®f3F grammar both unknown words
and unknown constructions. The tagger has a 79% taggingaxc(84% for known words) on
this test set of 263 utterances where 156 are exact matcbhegXisted in the training corpus).
These exact matches could again be seen as the grammargmwdrigh gives a 59% accuracy
which means that we once again have been able to boost tluerparfce, getting a more robust
interpreter with a 34% increase in tagging accuracy. As,siéntagger performs similarly to
the previous tagger.

The word based tagger seems to have a problem when commos a@rdrring in song titles
appear alone (such as you, a etc.) tagging them rather asggdoto a song title instead of the
overall dialogue move. It seems that it has been over-tdadmesongs and groups. This could be
solved by a post-process checking if the rest of the sorgvtitirds really appear in the utterance.
Another option is to retrain the tagger with songs and graapsgesented as whole entities (e.g.
dancingqueen).

2.2.3 Dialogue Move Scores

The word based tagger makes it possible to calculate whatWédialogue move scores” by
taking the word confidence scores from the ASR for all wordgj¢al with a specific dialogue
move and calculate the mean confidence of these. This meainftithe example above we
would get two scores: one for the dialogue maoaaiest(playlist_add) based on the word
confidences of four words and one for the mamswer(group(orup)) based on the word con-
fidence of the artist “orup”. In this way we will not rely on t#SR confidence score for the
whole utterance when choosing grounding strategies in Gdibt look at the confidence score
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for each dialogue move. The GoDiS system uses a more fineegraicale of grounding levels
than many other dialogue systems and the grounding behavidsioDiS is not limited to the
perception level but also chooses different strategiesmignt on semantic and pragmatic un-
derstanding of the user input (see [Lar02]). In GoDiS eaalodue move is grounded separately
and the choice of grounding strategy is currently condéaon the confidence score from the
speech recogniser for the whole utterance. However, ittenahe case that some parts of an
utterance have a higher confidence rating than others #tlsisawn by the variation of the word
confidence scores) and a better dialogue behaviour wouldrbexhmple to confirm only the
parts rated lower. This is easily done if we can obtain diagogpnove scores. The GoDiS ground-
ing behaviour would work in the same way only with the minordification that we keep track
of each dialogue move’s score instead of only the ASR confielescore. A multi-score version
of GoDiS has therefore been implemented to be prepared éongh of dialogue move scores.
From a multimodal point of view this means that we can assgim@l confidence to dialogue
moves performed through the graphical input such as a cli¢ks makes it possible to avoid
explicit grounding of these moves.

2.2.4 Tagging N-Best Lists with Dialogue Moves

To be able to robustly tag N-Best hypotheses and their trgntigns with dialogue moves for a
re-ranking experiment we used the word based dialogue nagget to simulate a more robust
way of parsing as we are using the SLM generated in D1.3 toyo®the N-Best lists.

We will not go into detail of the re-ranking experiment assthieyond the scope of this de-
liverable but we will give a short description to see how thgger was used. This re-ranking
experiment is a further elaboration and adaptation to thBiS@nvironment of the work car-
ried out in [MAB'05] (see chapter 6). It shows how we can benefit from taking account
dialogue context when re-ranking speech recognition (AlBRpotheses. We have carried out
experiments with human subjects to investigate their tgktiti rank ASR hypotheses from the
DJ-GoDiS domain using dialogue context. Based on the esfilthese experiments we have
explored how an automatic machine-learnt ranker profithfusing dialogue context features.
An evaluation of the ranking task shows that both the humbjests and the automatic classifier
outperform the GoDiS baseline (i.e. always choosing thentegi of an N-Best list) and that they
perform better and better the more dialogue context is meaadiable. Actually, the automatic
classifier performs slightly better than the human subjantsreduces sentence error rate 53%
in comparison to the baseline.

What we needed for the experiment to prepare the training\aas a robust way to tag the N-

Best hypotheses and the manual transcriptions of the usantes. We used the grammar to
get a grammaticality score but opted for the word based tadggéhe tagging task. The test set
used in the above experiments is more extreme than the NlB&swve have used here as the
words in the N-Best lists are all known to the tagger as thabolary for the SLM is the same

as for the original GF grammar. We used the word based taggagtthe 2654 ASR hypotheses
in our training data and the 391 transcriptions with diaguove tags for each word. We then
took the word dialogue move tags and eliminated all dupdisab get a dialogue move tag (or
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tags) for the whole utterance. This was used as one of therésator our machine classifier.

Another feature that we were able to obtain was a list of diaomove scores calculated from
the dialogue move word tags and the word confidence scorepkasreed earlier. We also looked

at the resulting dialogue moves in an N-Best list and pickgdlte most frequent dialogue move
of the list as an additional feature. All these featuresiobthwith help of the dialogue move

tagger resulted in being very important factors for theaieking task.

We also used the dialogue move tags to be able to compare paathhsis with the transcription

on concept level and by that automatically label all hypséseas being conceptually similar or
not to the transcription.

2.3 Dialogue Move Prediction

In D1.3 we generated dialogue move specific language mobeisisg that by using these we
would be able to improve recognition performance even &rrtAlowever, to be able to use these
we need to be able to choose between them i.e. we need totpsdditdialogue moves are to
come.

Out of the scope of task 1.4 we have carried out some work ttmexgdialogue move prediction

i.e. predicting what the user of a dialogue system may dosfhir next turn. We have used the
machine learner TIMBL [DZvdSvdBO01] to predict user dialeguoves from information states.
Our first experiment was based on a small training data setitofraatically generated logs of

information states and dialogue flow from the DJ-GoDiS aggtion. The features considered
for the experiment were chosen from the information avéelai the information state in the

dialogue logs. The features selected were the previous 1fRiMg (i.e. the move before the

current system move), the information in shared commitsi¢BHCOM), the shared actions
(SHACT), the current question under discussion (QUD) aecctirrent system move (LM).

An example of a training instance where the dialogue stategsesented by the five features
explained above and classified with the next user dialogueerowmks as follows:

RegList,=,Add,WhGroup,ICM@ICM@AsKArtist, AnsGr@AnsSo
This corresponds to a dialogue state where:

¢ the previous move was a request concerning the playlistl(Rq

there are no shared commitments (=)

there is a shared action of adding something to the playdd)

the question under discussion is what group to add

the current move is a combined move of grounding moves (IC\) @ question about
what artist is under consideration (AskArtist).
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e The user move performed in this case was a combination of 8wers: the name of a
group and of a song.

We obtained an accuracy of 67.51% by using the informatiatesind classifying 19 different
classes. The classes here correspond to different dialngue combinations that could be of
interest to gather in the same dialogue move specific SLM (DM)SThis means that we could
distinguish between 19 different types of DMSLMs.

Another thing to keep in mind when looking at the results &t thhere are no uniquely correct
matches of a dialogue move and a state as a user can choosebetveral possible moves in
each state. What we want is a learner that can predict the plenssible move (or moves) to
help us choose an appropriate language model. To get a loktdéenf how our learner is working
we need to look at its top choices and see if one of these pames to the user move which
was actually realised. Using the TiMBL verbose option “dla¥g us results where this could be
investigated and from which we could calculate a more appatgaccuracy score for the task.
By only looking at the 1-Best result we got an accuracy of 6 &¥eent. However, by considering
the two best choices the learner gives us we get an accuraty%f Looking at the learner’s
three best choices to see if the correct class is among thasseus an accuracy of 81%.

The work described here for predicting the dialogue moveseamay perform in order to be able
to switch to appropriate language models could easily bptaddo the similar task of decoding
the dialogue move performed by a user. In this case we co@dhgessame information as has
been used here but in addition we would have information fileespeech recogniser available.
This could mean that that our decoding task gets much eagiemvore information available
than just a text string as in section 2.2.

2.4 Conclusions

We have shown that we can bootstrap dialogue move taggehns isaime way we bootstrapped
statistical language models in D1.3 by generating traismgora from GF grammars. Our dia-
logue move tagger performs better than our interpretatiamgnar just as the SLMs performed
better than the ASR grammars. However, we have also showmwthavould probably get a
much better performance if we took into account dialogudexdnn the semantic decoding pro-
cess just as was done for the task of predicting the nextgliglonove in order to choose the most
appropriate SLM and for the task of re-ranking N-Best li3isis is something that would be eas-
ily done in an ISU-based framework by using the informatitatesas an additional knowledge
source when parsing the user input.
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Chapter 3

Training statistical semantic parsers from a
grammar generated corpus

In this chapter we describe models for semantic parsingatteadlesigned to cover more complex
semantic hierarchies. We describe the novel concept of tpam based semantic parser and
compare it with the Hidden Vector State Model. As in the poergi chapter these models are
trained from corpora generated by a GF-task grammar, saviteggand costs of manual annota-
tion of training data. The domain is a tourist informatioakawhere the driver of a car can ask
for information about hotels, bars and restaurants in aanted town. This task was realised in
English.

3.1 Training and Test Data

3.1.1 Collection of “Example” Utterances

A small corpus was collected for training and testing. Weeds8 co-researchers who were
familiar with the task to submit a set of 10 “example” intdrans with the system and a number
of more advanced dialogues (see table 3.1). The data wasedivinto a development test set

Table 3.1:*Example” interactions of training and test set.
| | Dev | Test|

prompt sets 5 4
male / female users10/6| 7/2
native / non-native| 12/4| 5/4

sentences 353 | 311
Words 1605 | 1689

(dev) and a evaluation test set (test). It was taken cardtibagets did not overlap. The dev set
was mostly used as held out data for interpolation, selecifahe best model, inspiration for
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grammar design and other purposes. The test set was usditii@rt@st runs done in the tourist
information domain.

3.1.2 The tourist information domain

In the tourist information domain all slot value pairs angtasct concepts are linked to querying
a database containing information about hotels, barguestts and tourist attractions.

As abstract concepts we used what can be considered as theonuson dialogue acts such
as greetingshello, by@, positive and negative answers to questiafBr(n, negaty requests to
repeat a system responsepea), requests for an alternative entitgalf) or request for more
information fequestmore).

Near relationsr{ean make it possible to ask for something that is close to amgiteee. And
not relations allow recognition of phrases likedt so expensive

Users can ask for general information about a bar, hotel staveant that fits their specifi-
cations (eg.cheap, centrgl This is reflected in the conceptsquestbar, requesthotel and
requestrestaurant In addition to that they can ask for the name, the telephamsber, the
price or the location of a place, mirrored @guestname, requesphone, requesprice andre-
guestlocation

There is in general a slot for each field of the data base. Thedadr contains street names,
the field name was split intbotelnames, barnamesdrestaurantnameghe near relation can
take tourist attractiongttraction, or names, the price ranggricerange can take three values:
cheap, moderate and expensive. The gtatelimit reads a price that is specified as a number.
The slotfoodtakes different types of cuisines addnkstakes different beverages. There are five
different townareas Other slots take room types, stars, music, booking dayeoay, numbers,

All slots accept the valuedbntcaré, indicating user responses likire price is not importandr
doesn’t matter where it isEven a unspecifieddontcaré is allowed, when the user just utters
| don’t carewithout indicating a specific slot. In this work the view omsantic parsing is that
the parser can only use information provided in the sentandedoes not take previous system
responses into account. It is assumed that the dialoguegeawdl| resolve any ambiguities that
result from this.

The grammar was designed to cover user utterances that@oeud in the pursuit of these tasks.
The dev set was used as an inspiration for grammar writingeé&ally for partial tasks where
no example utterances could be found in the dev set otheces®uwvould have been used as
well. The grammar writer knew the test set but did not consslipinclude phrases from it in the
grammatr.

3.1.3 Generating a Training Set with a GF-Grammar

The HTK task grammar that was used in D1.3 was ported to GFabb&act syntax was used to
model the words of a sentence. The concrete syntax was ussablel the hierarchy of semantic
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concepts. By removing the semantic concepts out of the etm@yntax a word grammar is
generated as it was used for the training of statisticaldagg models in D1.3. This has two
advantages:

1. Removing all semantic concepts from the concrete systeariy easy and can be done au-
tomatically. Therefore only one grammar must be maintafoetraining semantic parser
and statistical language model of the speech recogniser.

2. The translate-function of GF can be used to implement & Is@snantic parser. GF can
translate from a word only grammar, using a concrete synigxme semantic concepts,
into a semantic grammar, which has semantic concepts sEkaifithe concrete syntax.
Both grammars use the same abstract syntax.

The corpus was generated using tools of GF and HTK. Both tiealsire random generation
of sentences. GF can output all different sentences thgicesble in a grammar. The output
combines the actual words that were uttered in a sentenbeansemantic annotation. In this
format the example sentence used above would have the folidarm:

I am looking for an up market French restaurant and a budge¢hia the town centre.

| am looking forrequestrestaurar{an pricerangé=expensivéup market)
food(=Frencli{French) restauranj and
requestrestauraria pricerangé=cheagbudge}) hotel in theared=centrétown centre))

This format is then translated into a HVS style input formathe input format for the n-gram
based semantic parser.

3.2 A hierarchical Model for Semantics

All semantic parsers described in this chapter are basedsemantic models that uses a tree
hierarchy, where concepts that belong together can be gdxogether under the same hierarchy
level. Figure 3.1 illustrates this using an example sereddhie semantic hierarchy can either
be written in a bracketed formalism or be displayed as a ttemnsists of slot-value pairs and
abstract concepts. In the example sentence “reqestauran)” or “requesthotel)” would

be instances of abstract concepts. Their child nodes aadlysiher concepts. “pricerange
expensiveor “area= centré would be instances of slot-value pairs.

Values are clearly linked to trigger words or phrases in thetence. The relations between
the word ‘tentré and the valuecentreor the words tip market and the valueexpensivere
indicated by dashed lines in the tree. Slots like “priceedry “food” are mostly determined
by the values that they can take and whether the abstracépbabove them can take them as a
child node.

Abstract concepts are mostly determined by the parent rnogle dan attach to and the child
nodes they can expand into. They are also associated witlisviothe sentence, although this
relation is not as explicit as in the case of values, as ineéchy dashed lines in the tree.
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Figure 3.1:Example of a semantic hierarchy displayed as a tree or in @lketed formalism.

Sentence

/\

request_hotel

request_restaurant |
/ \ \ / ' \
\\ |
|

pricerange food | pricerange area
\ ,'
' [
expensive French \\ cheap | centre
N \ | \
AN |
N \ \ | | \
N \ \ ! ' \

N \ \
I'm looking for an up market French restaurant and a budget hotel in the town centre.

Sentencé requestrestaurar(pricerange= expensive, food = French
requesthotel pricerange= cheap, area= centre

)
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In the following semantic parsing will be viewed as a proagedo associate the correct semantic
tree with a sentence or to associate only partial trees teghtence.

3.3 Semantic parsing with a GF grammar

Many dialogue systems still use recognition grammars foresgic decoding. Since we have a
GF grammar available, we can directly use it as a semantsepar

The advantage of directly using a grammar is, that if a seetgets parsed, the semantic tree or
in the case of ambiguity the set of semantic trees will beguengbarses. The problem with this
approach is that only trees that are explicitly coded in la@gnar can be parsed. For a grammar
that is used to generate training sentences for statistiodkls it is sufficient when phrases are
roughly generated in the correct context. It is not necggsamodel every detail, as it would be
the case for a grammar based semantic parser.

Both dev set and test set were parsed with the generatiomgaar®7 out of 353 sentences of the
dev set could be parsed. Parsing of the test set succeed2airt @f 311 sentences. Especially
long sentences providing a number of slot value pairs failedr short answers the grammar
worked quite well.

3.4 A n-gram Based Semantic Parser

A n-gram based semantic parser looks like an ordinary n-dgaaguage model, the only differ-
ence is that the words are semantically enriched. The n-geatof the model can be regarded
as a framework to make sure the calculations can be doneeefficand from left to right, as the
word stream comes out of the recogniser. The semantic medetlied in the training data.

3.4.1 Semantic Model

The semantic model of the n-gram based parser is encodeeé tnaihing data which consists
of training sentences of semantically enriched words. &hvesre generated with a grammar,
as described in section 3.1.3. This material was convertieda stack based annotation. As
displayed in figure 3.2 each semantically enriched word istsef the orthographic form and a
semantic stack.

In the actual format used by the tools in this investigatidfecent stack layers would be delim-
ited by a dot “.”. Values start with a ~ symbol and the last depparated segment would always
contain the orthographic form of the word. An example is giwrefigure 3.3.

Each orthographic word would have several entries in thalolary with different semantic
stacks attached. The training of this model is simple, ortegtdas semantically annotated, since
it only involves counting n-grams of semantically enricheords. Well established language
modelling techniques such as backoff and smoothing candxk us
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Figure 3.2: Stack based annotation for the training of mgbased semantic parsers.

requestrestaurant requesfrestaurant requestrestaurant
requestrestaurant pricerangeexpensive pricerangeexpensive food=French

| am looking for an up market French
requesthotel requesthotel requesthotel
requestrestaurant requesthotel pricerangesheap requesthotel areazentre areazentre
restaurant and a budget hotel in the town centre

Figure 3.3: Actual format used for the training of n-gramdzhsemantic parsers.

I

AM

LOOKING

FOR

REQUEST_RESTAURANT.AN
REQUEST_RESTAURANT.PRICERANGE."EXPENSIVE.UP
REQUEST_RESTAURANT.PRICERANGE."EXPENSIVE.MARKET
REQUEST_RESTAURANT.FOOD."FRENCH.FRENCH
REQUEST_RESTAURANT.RESTAURANT

AND

REQUEST_HOTEL.A
REQUEST_HOTEL.PRICERANGE."CHEAP.BUDGET
REQUEST_HOTEL.HOTEL

REQUEST_HOTEL.IN

REQUEST_HOTEL.THE
REQUEST_HOTEL.AREA."CENTRE.TOWN
REQUEST_HOTEL.AREA."CENTRE.CENTRE
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3.4.2 n-gram semantic decoding

Parsing a sentence involves expanding all orthographidsvofr a sentence into a network with
all words given all possible semantic prefixes and searcthiadest path in this network. The
Viterbi Algorithm provides an efficient solution to this goem. In this work, the model would

first consider only transitions of the order of bigrams oaig Only if no bigram transition was

found it would resort to using unigrams.

Apart from the n-gram or Markov Assumption this model does presuppose any semantic
theory. The semantic theory is coded in the semantic anantat the training material. Using
a semantic stack is only one possibility of realising n-gtzased semantic parsers.

3.4.3 Experiments and Results

To investigate how much training data a n-gram based sempatser needs to work properly
and to investigate the influence of the length of the wordonysh on the quality of the parsing
result, the grammar of section 3.1.3 was used to randomlgrgés a training corpus of one
million sentences of semantic words. The n-gram based denjaarser was trained on the
first 2000, 10000, 100000 and 1000000 words of the corpus. I&rgh of the word history

n was varied between 2 and 5. All n-grams were built with modiff@eser-Ney backoff. The
evaluation was carried out on two test sets consisting @fited dialogues. The dev set was used
to build the grammar, which means the grammar would contdm af the phrases that are in
this data set. Itis very likely that some of those appeardidnraining data for the n-gram based
semantic parser. Similarly, the test set is only based aenited dialogues and this is not ideal,
but it is currently the best available approximation to asejpendent test set until recordings of
interactions of real users with a real system become availab

The parses of different models were evaluated against rheefaeence annotations. Each model
was evaluated twice:

¢ In the deep evaluation, a tree was assumed as the theoratic®ll. The evaluation was
performed top to bottom, which means, that the full stacktrbasdentical with the refer-
ence to be counted as correct.

¢ Inthe shallow evaluation, only leave nodes were evaluaiegtarchy was only considered
in a limited number of concepts e.g. in “not” relations as ot.pricerangeexpensive
relating to the phraseot too expensiver in near relations, like near.hotelnam&sgyal
Hotel’ corresponding to the phrasear the Royal HotelLeaf nodes can be concept-value
pairs or just concepts. In the case of short and simple sesdethis kind of evaluation is
often sufficient and realistic.

In both cases identical items in the parse were merged arydevaluated once. That means if
requestbar was attached to the wordsindbar, this would be regarded only as one instance of
this concept. Precision and recall were calculated. Thebaic mean of these two values, also
called f-measure was used as an evaluation metric.
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f-measure on dev or test set

f-measure on dev or test set

Figure 3.4:Results of a deep evaluation of the n-gram parser.
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The top plot of figure 3.4 shows two distinct clusters of linkss not surprising that all models
performed better on the dev set than on the test set and trabsing the number of training
sentences gives better results. Above 100000 sentencpstfieemnance on the dev set improve
only marginal. On the test set the results even decreasenddels achieve their best perfor-
mance of 69% on the test set for a training set of 100000 seeserResults for 4-grams and
5-grams are identical, probably because non of the 5-grartieeimodels occurs in the test set
or dev set. The best performance of the dev set was 83% anelvadhwith a trigram model
trained on one million words. This is the same model that pced the outlier on the test set.
The bottom plot of figure 3.4 shows that bigrams and trigramaklyalmost identical results as
higher order models. It seems that the semantic annotatittre gorevious word carries a lot of
information already such that it is not necessary to lookerrahead.

Figure 3.5:Results of a shallow evaluation of the n-gram parser.
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Figure 3.5 shows the results of the shallow evaluation. Ereal impression is very similar to
the deep evaluation, however the f-measures of the dev astusid 5% to 10% higher than in
the deep evaluation. The best result on the dev set was thenitiren word trigram with 89%
and for the test-set it was the 100000 and the one million veagchm models that reached the
best performed best with 72%.

Bigrams and trigrams seem to be very well suited for n-gramaseic parsing. This is an im-
portant result, as it allows the parsing algorithm to be lsgpiple and efficient.
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3.5 A Hidden Vector State Semantic Parser

The explanation of the Hidden Vector State Model in thisisectollows in large parts the de-
scription given in [HY05]. Considering the semantic parse shown in figure 3.1, the semantic
information relating to each word is completely describgdh® sequence of semantic concept
labels extending from the preterminal node to the root ndfdbese semantic concept labels are
stored as a single vector, then the parse tree can be tramefanto a sequence of vector states
similar to the one shown in section 3.4.1. Viewing each vestate as a hidden variable, the
whole parse tree can be converted into a first order vectta Btarkov model.

Each vector state is in fact equivalent to a snapshot of tieksh a push-down automaton. In-
deed, given some maximum depth of the parse tree, any PtistiabContext-Free Grammar
(PCFG) formalism can be converted to a first-order vectde $tkarkov model. If we view each
vector state as a stack, then state transitions may be dalcioto a stack shift by positions
followed by a push of one or more new preterminal semanticepts relating to the next input
word. If such operations are unrestricted, then the staeeswill grow exponentially and the
same computational tractability issues of hierarchicalMgvare incurred. However, by impos-
ing constraints on the stack operations, the state spadseca@tuced to a manageable size. Pos-
sible constraints to introduce are limiting the maximunctktdepth and only allowing one new
preterminal semantic concept to be pushed onto the stadafdr new input word. These con-
straints ensure that the size of the underlying probaligityes are linear in stack depth, number
of concept labels, and vocabulary size. Such constraifgstafely limit the class of supported
languages to be right-branching. Although left-branchstrgctures do exist in English, the ma-
jority of sentences can be represented as right-branchincfgres. In addition, right-branching
structures are generally preferred because they reduceditkéng memory needed to represent
a sentence [Phi95].

Although any parse tree can be converted into a sequencewi\states, it is not a one-to-one
mapping and ambiguities may arise. However for the semaatising task defined here, what
we are interested in is not the exact parse tree to be reahuareare the concept/value pairs to
be extracted. Even if there are ambiguities, the extraaiadept/value pair will be the same. For
example, assuming A and B are semantic concept labels and xame words, the partial parse
trees B(A(x) A(y)) and B(A(x y)) would share a common HVS regentation and hence would
yield the same concept/values B.A=x and B.A=y. If the eesitk and y were actually distinct,
then the preterminal labels would have to be made unique.

3.5.1 Definition of the HVS model

The joint probabilityP(N,C,W) of a series of stack shift operatioNsa concept vector sequence
C, and a word sequend® can be decomposed as follows

T
PIN.C.W) = [PV . Cr )P . Ci P ™.Ch) - (3.1)
t=
where
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° Ct1 denotes a sequence of vector states;. ¢; at word positiort is a vector oD; semantic
concept labels (tags), i.& = [c[1],¢[2], .., c[Dt]] wherec[1] is the preterminal concept
immediately dominating the wonak andc;[Dy] is the root concept,

° Wlt*1Ct1*l denotes the previous semantic parse up to poditioh,
e n is the vector stack shift operation and takes values in thged .., D;_1,
e Ci[1] = cy, is the new preterminal semantic tag assigned to wgrat word positiort.

The stack transition frorh— 1 tot given preterminal semantic concept tag for word w; is

all] = cw (3.2)
ct[2.D] = c-1[(m+1)..Di_1] (3.3)
Di = Dii+1-—ny (3.4)

Thusn, defines the number of semantic tags which will be popped efstack before pushing
oncy. The casay = 0 corresponds to growing the stack by one element i.e. egterinew
semantic tag. The case= 1 corresponds to simply replacing the preterminal at wosltjmm

t —1 bycy, atword positiort, the rest of the stack being unchanged. The oasel corresponds
to shifting the stack i.e. popping off one or more semantjsta

Equation 3.1 is approximated by

P(neW; 4,Cy Y~ P(nefei-1) (3.5)
P(a[wW.Cihm) ~ P(a[1]|af2.Dy) (3.6)
P(w/W;*,C}) ~ P(wa) (3.7)

3.5.2 Training assumptions
The HVS model needs the following resources for training:

e A set of domain specific lexical classd=sor example, in an tourist information domain,
it is possible to group all names of tourist attractions iot@ single clas8TTRACTION
Such domain specific classes can normally be extracted atitathy from the application
domain database schema.

e Abstract semantic annotation for each utteran&ich an annotation need only list a set
of valid semantic concepts and the dominance relationdt@ygeen them without consid-
ering the actual realised concept sequence or attemptiigndfy explicit word/concept
pairs.

The provision of abstract annotations implies that theodjaé designer must define the seman-
tics that are encoded in each training utterance but nee@rowide an utterance level parse.
It effectively defines the required input-output mappinglstravoiding the need for expensive
tree-bank style annotations. For example, in a touristrmédion domain, a dialogue system
designer may define the following hierarchical semantiatr@hships:
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e REQUESIRESTAURANT(PRICERANGE NEAR(ATTRACTION))
e REQUESIPRICE(RESTAURANTNAME)

Having defined such a set of hierarchical semantic relabipss annotation is simply a method
of associating the appropriate semantics with each trgintterance and does not require any
linguistic skills. For example, when building a system frggratch, a dialogue designer can
take each possible abstract schema in turn and give exaofatesresponding natural language
forms, as in
REQUESTRESTAURANT(PRICERANGE(X) NEAR(ATTRACTION(D)))-

1. I'would like a X restaurant near the D.

2. find me a restaurant close to D that is X.

3. I'am looking for something X to eat somewhere around D.

In this experiment we used a grammar to generate a corpuprihaties both the surface form
and the corresponding semantic annotation.

3.5.3 Training

The first step needed to train the HVS model is to replace aiscmembers by their corre-
sponding class names. Where there is ambiguity, the clagsing the largest span of words is
replaced first. Where a word or phrase may occur in more tharckass, the first class encoun-
tered is chosen arbitrarily.

In a second step the vector state sequence will be exparmiadiie abstract annotation and the
appropriate concepts will be attached to the corresponixigal Concepts. If there are more
words than vector states in the sequence, new vector statethe/conceppUMMY the bottom
position will be added.

Note that this final set of vector states only provides theoghlid semantic vector states that
can appear in the parse results of the current utterance x#gieed further below, this set is
used as a constraint in the EM re-estimation algorithm. ésdaot define the actual vector state
transition sequence. Further note that the total numberstihdt vector states required to use
the HVS model for a particular application can be enumerdiesittly from this expanded vector
state list.

The system only allows thBUMMYag to appear in preterminal positions, therefore, for eons
utive irrelevant word inputs, the model will stay in the sameetor state. Only when a relevant
word input is observed will thBUMMYag together with zero or more preceding semantic tags be
popped off from the previous vector state stack and a neveqpnéal tag will be pushed into the
stack accordingly.

The training starts with a flat initialisation. Then all pareters are iteratively refined using an
EM based re-estimation procedure. There are no explicithwerel annotations in the training
corpora, hence parameter estimation based on event caummistde used and forward-backward
estimation must be applied instead. Let the complete setoalehparameters be denoted iy
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EM-based parameter estimation aims to maximise the expactaf L(A) = logP(N,C,W|A)
given the observed data and current estimates.

During training, two constraints are applied in the estioraprocess:

1. For each utterance, a state transition is only allowedtii incoming and outgoing states
can be found in the corresponding semantic annotation.

2. If the observed word is a class name (suchAGERACTION, then only semantic con-
cepts (states) which contain this class name can be assborweth the word (eg
NEAR.ATTRACTION but notREQUESIBAR. In addition, in order to cater for irrelevant
words, theDUMMYag is allowed everywhere. That is, state transitions fromo theDUMMY
state are always allowed.

The following example illustrates how these two constiaimte applied. Consider again the
annotation for the utterance “I would like a cheap restaurear the Castle” which was in
abstract form

REQUEST_RESTAURANT REQUEST_RESTAURANT+DUMMY
REQUEST_RESTAURANT+PRICERANGE(X) REQUEST_RESTAURMNTERANGE+DUMMY
REQUEST_RESTAURANT+NEAR REQUEST_RESTAURANT+NEAR+DUMM
REQUEST_RESTAURANT+NEAR+ATTRACTION(D) REQUEST_RERBANU+NEAR+ATTRACTION(D)+DUMM'

The transition fronREQUESTIRESTAURANT+PRICERANGE(Xp REQUESIRESTAURANTS allowed
since both states can be found in the semantic annotationweVs, the transition from
REQUESIRESTAURANTo REQUESIBARIs not allowed afREQUESIBARIs not listed in the se-
mantic annotation. Also, for the lexical itekin the training utterance, the only valid vector
state IREQUESTRESTAURANT+PRICERANGE(X§inceX has to be bound with the preterminal tag
PRICERANGE

3.5.4 Experiments and Results

The same grammar generated corpus was used as in the expsraescribed in section 3.4.3.
All other resources necessary for the training of a HVS medeh as

e training sentences,
e abstract semantic annotation and
o lexical classes with their corresponding word string magpi

were generated by the grammar as well. The HVS stack size ata® $ and Witten-Bell
smoothing was used. As in the previous experiment a shalalaadeep evaluation was carried
out. Concept value pairs were only evaluated if the ternmipakept and the lexical class would
match or if the terminal concept was DUMMY and the pre-temhconcept matched the lexical
class.
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Figure 3.6:Results of a shallow evaluation of the Hidden Vector Stategra
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Figure 3.6 shows that the performance of the HVS model imgs@s the size of the training set
increases. For all graphs the best f-measures are obtai@@0@00 training sentences. The dev
set reaches 69% in the deep evaluation. This improves to AA¥eishallow evaluation. The
best f-measure on the test set is 63% in the deep evaluatib@% in the shallow evaluation.

3.6 Conclusion

Both statistical models show flexibility in covering unsessamtences. The n-gram parser gives
better results than the HVS model. Training a n-gram pars@hres only counting semantically
enriched words as provided by the grammar. This is a muchlsirtgsk than aligning a semantic
annotation using EM in the case of the HVS model. Both n-grarsgr and HVS model require
careful design of the concept hierarchies to work well. ailtgh the general impression is, that
the HVS model in its current implementation needs more twepto get it to work. Especially
the implementation of a “DONTCARE” value, which is a valuatls possible for all slots and
can even be unspecifitd

The results in this investigation are a lower than thoseinbthby work on the ATIS corpus,
which is the standard corpus used for similar investigatidinere are two possible explanations

LIn this case it can only be classified by using the previoutesyslialogue act as context.
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for that. The first is that in this investigation the modelseverained on randomly generated
corpora and not on a proper training set. The second is thail<lan the task definition such as
the integration of a DONTCARE value may have caused our tabk tmore difficult than ATIS.
Both statistical models are fit for being used in a dialogustesy. Bootstrapping with a grammar
generated corpus works for both models, although it is reaegdo further investigate how both
models can be improved by training them on real user dat&owitgoing through the pain of
manually annotating large data sets. In this respect the HU&el seems to be better suited.
Both statistical models outperformed the GF grammar by soraggin. In real recognition
experiments the grammar would have probably scored b&itemg the speech recogniser on a
semi-optimal path through the grammar instead of failinigisTs a bit of an unfair comparison,
as the grammar was not designed to explicitly cover all se@® but to generate a corpus for
the training of statistical models.

Future work will involve the integration of both decodersaispeech dialogue system and eval-
uating their performance under real world conditions.
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Chapter 4

Conclusion and Future Work

Semantic decoders in the form of dialogue act taggers oatukical parsers are an essential
component of a spoken dialogue system. When SLM-based A8Beid it can be particularly
problematic since the recognised word sequence may caspiagch recognition errors or may
not be grammatical. That means robust parsing is necesSttystical semantic decoders pro-
vide a solution to this problem, but they need training ddtallowing from D1.3, this work
has investigated the effectiveness of using small devetopgrammars to generate bootstrap
training corpora.

Investigations were conducted in Swedish in an MP3 domaigysattern matching techniques
such as TiMBL and MBT. Although these taggers were not capabtapturing deep semantic
relationships they were sufficient for the semantics of thenain. Both methods worked well
and yielded 78% accuracy. This means an important boostrfarpgance in comparison to the
more restricted parsing behaviour of the GF grammar. Alinahe semantic decoders obtained
have not yet been integrated in the dialogue system they lbeee used successfully for other
decoding tasks.

For future work we will consider to make GF itself more robu3he possibility is to develop an
agenda-driven chart-based parsing algorithm for GF whidlhderive a set of parse items even
if the recognition is unsuccessful. By using a number of dédn and induction rules one could
paste these items, representing substrings of the ingathbigger items and thus end up with an
item covering the entire input. Using induction rules willagantee a result but also generate a
cost representing the difference between the input beitigeilfanguage of the grammar or not.
Another strategy that we are considering is what we call k8kend-Bake parsing” based on the
notion of Shake-and-Bake semantics [KS85]. The conceptite gasy. When it is not possible
to recognise an input string with a concrete grammar youlctig¢be fully instantiated items in
the obtained parse chart can be meaningful according too$teaat grammar. This means that
when given an input such as "runs John” we would have theadistleS := NP VP (meaning
that we have an S if there is an NP and a VP without considen@gtder of the two latter); the
concrete rule$ -> NP VP, NP -> John andVP -> runs and the fully instantiated items for
"John” as an NP and "runs” as an VP. These items cannot bedaman S by the concrete rule
but they fulfill the requirements for deriving an S by the afstrule. We can therefore use the
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obtained abstract syntax of an S with its NP mapped to "Johd"its VP mapped to "runs” to
linearise a semantic representation.

A second series of experiments was carried out on an Englisist information domain using
hierarchical semantic decoders such as the Hidden Vectbte Stodel an n-gram based parser.
Both models are capable of capturing semantic hierarchissrdences. Evaluation of the HVS
model resulted in f-measures of 63% for the deep evaluatidr6% for the shallow evaluation.
The n-gram based parser reached an f-measure of 69% for ¢jpeegtaluation and 72% in the
shallow evaluation. Comparision of our results with resthtat we achieved on the ATIS corpus
using the HVS model suggests that our tourist informati@k tia probably a bit harder and
that there should be room for improvement when using realitrg data instead of a grammar
generated corpus. We are planning to include robust seendetioders in a speech dialogue
system to evaluate their performance in the presence ofiseas.

Both investigations showed independently that statiktieaantic parsers have a clear advantage
over rule based methods. Similar to our results in deliMerBd..3 we could show that training
semantic parsers on corpora that were generated by haneldcgghmmars is a good method for
bootstrapping dialogue systems. Parsers created in tlyicaraalso be used to provide a raw
annotation for training data, minimising the effort of mahaorrections.
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