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Summary

The original focus of task 1.4 was to develop techniques by which multimodal input streams can be
integrated into SLMs. Analysis of a Wizard of Oz data collection showed that integrated multimodal in-
teraction of users with the dialogues system occured only very rarely. In these rare cases, when speech
and clicks were used in an integrated way, clicks mostly occured seconds before or after the speech, there
were only few cases where both overlapped. This leads to the conclusion, that the statistical language
model (SLM) of a speech recogniser is not the right place for integrating multimodal inputs. It should be
done at a later stage. The results of task 1.3 suggest that using SLMs instead of grammars leads to superior
speech recognition performance. If SLMs are used in a dialogsystem along with late integration of multi-
modal acts, robust semantic parsing of speech recognition output is necessary. With the agreement of the
reviewers, the scope of WP1.4 was widened to include robust semantic decoding. In this deliverable, we
explore methods to create statistical semantic parsers or dialogue act taggers by generating corpora from
application grammars using the Grammatical Framework. We investigate approaches based on memory
based learning, an n-gram based semantic parser and the Hidden Vector State Model. We create all statis-
tical models directly from our interpretation grammars andcompare f-measures or accuracies of semantic
concepts or dialogue acts. The results show an important improvement of statistical methods over classical
grammars. Our experiments were carried out in English on a tourist information task and in Swedish on a
MP3 player interface. For both sites involved in this deliverable the results of this deliverable have great
influence on the decision of which robust semantic parser they will include in their final system.

Version: 1.0 (Final) Distribution: Public



Chapter 1

Introduction

This document reports mainly about parsing the output of Statistical Language Models (SLMs). The
original focus of task 1.4 was to develop techniques by whichmultimodal input streams can be integrated
into SLMs. As already detailed in status report T1.4s2 [YSW05], analysis of the SACTI multimodal
Wizard Of Oz data collections lead to the following results:

• Less than 2.5% of the data collected feature integrated multimodal dialog acts.

• Only 8 of the 36 participants used these acts.

• The time relation between speech and clicks is not on the wordlevel, but rather on the utterance
level.

This suggests integration of multimodal acts should preferably not be done in the language model compo-
nent of the recogniser, but at a later stage. A grammar based recogniser has the advantage that semantic
decoding can already be done inside the recognition grammar. The results of T1.3 [WJRY06] suggest that
using SLMs instead of grammars leads to superior speech recognition performance. However, if SLMs
are to be used in a dialog system, and late integration of multimodal acts is preferred, there exists the issue
of parsing grammatically less restricted speech recognition output. Robust semantic parsing remains an
active research problem even for unimodal input and forms a barrier for further progress with the cur-
rent systems in Cambridge and Gothenburg. With the agreement of the reviewers, the scope of WP1.4
was widened to include semantic decoding, following the outcome of task 1.3. As status report T1.4s2
[YSW05] already contains a detailed discussion on the problem of integrating multimodal input streams
in SLMs, this document will concentrate on semantic decoding.

1.1 Semantic Modelling of SLM-based ASR output

Taking the results of deliverable D1.3 [WJRY06] seriously means that speech recognisers should use
statistical language models instead of recognition grammars. In such a system architecture it is necessary
to introduce a new component, a semantic decoder, that can convert user speech (orthographic form) into
dialogue acts the system can process. With a grammar this is usually a trivial operation or a function of
the grammar itself. When using output from a SLM-based ASR system, the problem of parsing the input
into a dialogue act presents a significant challenge.

2
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The Cambridge group researches statistical parsers because they would fit best into the architecture of a
fully statistical dialogue system. The advantage of an entirely statistical approach is that dialogue acts and
probabilities are passed to the dialogue manager and the dialogue manager can take these probabilities
into account when deciding on which action to choose next.

The Gothenburg group is investigating statistical parsersfor the following reason: If a statistical language
model is used instead of a recognition grammar, then a lot of unexpected expressions will be in the speech
recognition output. Grammatically unconstrained stringsare not well suited to be parsed by a grammar.
This means that using robust statistical parsers instead ofa classical GF parser for semantic decoding is a
good alternative.

Figure 1.1: Speech understanding component consisting of an ATK speechrecogniser using
SLMs and a Hidden Vector State semantic parser (HVS).
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Figure 1.1 shows an example of how a semantic parser is integrated with a speech recogniser to form a
speech understanding component. Here the ATK recogniser [You04] passes n-best lists to the semantic
parser realised as a Hidden Vector State Model. The speech understanding component then passes a list
of dialogue acts to the dialogue manager.

1.2 Existing Rule Based and Statistical Approaches

Existing approaches for semantic parsing can be grouped in acontinuum between rule based, deterministic
models and statistical models.

Rule-based systems typically require hand-crafted rules which are integrated in grammars that are de-
signed to parse full sentences or chunks of sentences. The most prominent of these are MIT’s TINA
[Sen92], CMU’s PHOENIX [WI96], SRI’s Gemini [DMAM94] systems. Sometimes these rule based
systems are then augmented with corpus statistics to get better results. Whilst good performance is often
achieved using this approach, rule-based parsers are normally expensive to build and hard to transplant
from one application to another. Furthermore, they can still degrade badly in the face of high speech recog-
nition error rates and unexpected or ill-formed input sentences. In TALK we have used the Grammatical
Framework (GF) [Ran04] both to produce recognition grammars and SLMs as well as for semantic pars-
ing. However, at the current time there are no possibilitiesfor robust parsing within GF which would be
needed for an optimal performance when using SLMs for recognition. To implement robust parsing in GF
is beyond the scope of the TALK project and constitutes a research area of its own. However, in Chapter
4 we propose different possibilities for achieving robust parsing using GF grammars in the future.
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The statistical approach seeks to automatically train parsers from semantically annotated sentences in the
hope of building more robust decoders with less effort. An early example is AT&T’s finite state semantic
tagger in which a HMM is used to assign semantic concepts to words [PTG+92]. More sophisticated
models have been proposed since that can handle hierarchical structure such as the hierarchical Hidden
Understanding Model [SMSM97] and the hierarchical Hidden Markov Model [FST98]. These models
typically require every training utterance to be semantically annotated. More recently the Hidden Vec-
tor State model has been proposed as a constrained hierarchical model which does not require detailed
semantic annotation to train [HY05]

An alternative approach treats semantic decoding as a straightforward pattern recognition problem. The
Y-Clustering parser [YY06] classifies each input sentence to a set of exemplar sentences, which were
automatically selected from a training corpus using a sentence clustering technique.

In this report one of the existing techniques, the HVS model,is compared with a new model based on
a tagged statistical language model. The particular focus of this study is the effectiveness of the models
when bootstrapped from an automatically generated corpus.

Dialogue act (move) tagging has been of great interest mostly in order to be able to annotate corpora with
dialogue acts automatically [SCVS98] but also in some casesto decode or even predict the dialogue move
of the user’s last utterance in dialogue systems [SCB+00]. Dialogue move tagging has been explored with
different statistical and machine learning techniques [SCVS98, SCB+00, LdBKC04]. The best dialogue
act tagging models have obtained an accuracy of 70% showing the difficulty of the task of classifying
utterances to dialogue acts [PM98]. As different studies use different types and different amount of dia-
logue acts it is hard to draw any comparative conclusions from previous work. A survey of related work
shows that the predictors used for dialogue move tagging also vary. In [PB96] the prediction is dependent
on the system’s last dialogue act and the range of user acts corresponding to each system act seems to be
chosen manually beforehand. In the Verbmobil project [REKK96] the next dialogue act was predicted by
using statistical language models holding a dialogue history of previous dialogue acts. They also included
directional information by including the speaker as a tag. They used annotated logs for training and were
able to classify 18 distinct dialogue acts with an accuracy of 40%. In three subsequent studies shown in
[WPI99, PKIW98, PM98] dialogue move prediction was done with statistical language models trained on
annotated dialogues (the MapTask Corpus) experimenting with different predictors such as e.g. intonation
features of the user utterance or game information apart from dialogue move history and speaker informa-
tion. In [PM98] twelve distinct moves were classified with anaccuracy of 57% by using handcoded game
information.

In this report we will use data generated from grammars whichmeans that we need not put any effort
on manual tagging to obtain annotated data and at the same time we can assure that our data includes
all possible dialogue moves that we want to be able to decode in our domain. However, we will not be
able to use any additional features. Another distinction ofour work is that we are not tagging abstract
dialogue moves such as answers, requests etc. as in previouswork but we are tagging combination of dia-
logue moves and their slots i.e. dialogue moves such as ”answer(group(abba))” or ”request(playlistadd),
answer(song(dancing,queen))”. This is a much harder task.

1.3 Report organisation

The main focus of our experiments was to investigate if statistical semantic parsers can be trained with
corpora generated by GF task grammars. The experiments werecarried out in two different tasks, a MP3
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player interface and a tourist information system. The tasklanguages were Swedish and English. Chapter
2 details results on dialogue act tagging using memory basedlearning. These experiments were carried out
in Swedish on a MP3 player domain. The used dialogue act taggers provide only a shallow annotation.
They can not capture deep semantic hierarchies. Chapter 3 contains work on semantic parsing for an
English dialogue system designed for a tourist informationtask. The semantic models that are investigated
are the Hidden Vector State model and a novel n-gram based parser. Both models are hierarchical semantic
parsers using a theoretical model that is capable of discovering full semantic trees. Both models were
evaluated against deep (full tree) and shallow (leave nodes) criteria. Finally, Chapter 4 shortly summarises
the results of both investigations.

Version: 1.0 (Final) Distribution: Public



Chapter 2

Bootstrapping a Dialogue Move Tagger

In D1.3 [WJRY06] we showed how to bootstrap statistical language models (SLMs) by generating train-
ing corpora from GF grammars. This resulted in an enhanced speech recognition performance for the
DJ-GoDiS application as shown in [Jon06]. However, using unconstrained SLMs instead of restricted
recognition grammars means that the output from the speech recogniser will also be unconstrained and
thus the GF grammar will not always be able to parse the ASR output. Our preliminary strategy for han-
dling this problem in the DJ-GoDiS domain was to use a simple rule-based parser written in Prolog that
looks for keywords and phrases and maps them to dialogue moves (just as was done before the integration
of GF and GoDiS, see [Lar02]). However, such a parser is hard to maintain and doubles the grammar
work. In this chapter, we will therefore show how we have bootstrapped a dialogue move tagger using
the same methodology as in D1.3. We have trained two different dialogue move taggers from a corpus
generated from GF using memory based machine learning.

2.1 Training and Test Data

The main difference with our tagger approach in comparison with previous work is that we have trained
our taggers on a corpus generated from a GF grammar [Ran04] written for the domain where all utter-
ances appear together with the dialogue move(s) they shouldbe interpreted as. In this experiment we have
focused on the GoDiS application DJ-GoDiS which is a multimodal MP3 player that lets users control
their Internet audio player with the voice or by graphical input [EAB+06]. The user can among other
things change settings, choose stations or songs to play or create playlists. The data used for the experi-
ment comes from corpora generated automatically by GF from the Swedish GF grammar written for the
dialogue system DJ-GoDiS reported in [LBC+05].

The number of abstract dialogue moves in GoDiS is limited to requests, answers, ask moves, greet-
ings, quit moves and moves involving Interactive Communication Management (ICMs), e.g. grounding
moves, as reported in [Lar02] and in [LBC+05]. In DJ-GoDiS we have 6 different types of answers (e.g.
answer(song(X)) where X can be any of the songs in the MP3player), 3 different types of ask moves
and 18 different requests. In GoDiS an utterance and a dialogue move is not necessarily a one-to-one
pair but an utterance can be interpreted as several dialoguemoves i.e. conveying several concepts. This
means that the number of possible dialogue move combinations gets very large. The GF grammar that we
have used distinguishes 3873 dialogue move combinations and holds 55702 utterances representing these

6
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which implies that we have 55702 training instances marked with dialogue moves in our training corpus.
In this study we have focused on the Swedish grammar and generated Swedish utterances. However, the
English grammar would have given the same dialogue move combinations as the grammars have a com-
mon abstract level. A corpus fragment generated with GF froman early version of the English grammar
follows below to show the format of the original training data where all dialogue moves were generated
together with the utterances the grammar covered for these moves.

[request( playlist_add ), answer(item([the,final,count down])),
answer(group([europe]))]
i want to add the final countdown with europe please
i would like to add the final countdown with europe please
i want to add the final countdown with europe
i would like to add the final countdown with europe
add the final countdown with europe please
add the final countdown with europe
i want to add europe with the final countdown please
i would like to add europe with the final countdown please
i want to add europe with the final countdown
i would like to add europe with the final countdown
add europe with the final countdown please
add europe with the final countdown

Our taggers have been tested on a test set of 263 transcribed and annotated Swedish user utterances
including both unknown words and unknown constructions. These user utterances were collected with
the DJ-GoDiS system and thus represent the type of input a semantic decoder for this domain could be
exposed to. The utterances vary in length and range from simple one-word utterances (e.g. yes answers) to
more complicated twelve word utterances. An excerpt from the test set with dialogue move tags is found
below. The test set was tagged manually with dialogue moves by two annotators with an inter-annotator
agreement of kappa 0.99 [Car96].

jag vill fr åga om vilka l åtar han har gjort
(Eng. i want to ask about what songs he has made)
ask(xˆsongs_by_artist(x))

l ägg till sommaren är kort med tomas ledin
(Eng. add sommaren är kort with tomas ledin)
request(playlist_add) + answer(item([sommaren, är,kort])) +
answer(group([tomas,ledin]))

sommaren är kort
(A song title)
answer(item([sommaren, är,kort]

Version: 1.0 (Final) Distribution: Public
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2.2 Dialogue Move Tagging

We have built two different taggers to simulate a more robustway of parsing. Both were trained on the
corpus generated from GF where all utterances appear together with the dialogue move(s) they should
be interpreted as. The first tagger is utterance-based and built with the memory-based learner TiMBL
[DZvdSvdB01]. Although, this seemed to work successfully we opted for building a second tagger with
MBT [DZvdBvdS03], as it gave us a tagger we could use directlyat run-time and that would make it able
to give us dialogue move scores as explained below.

2.2.1 Utterance-based Dialogue Move Classifier

This tagger or dialogue move classifier was trained on 55702 utterances represented as bag of words
(BoW) and additionally the length of the utterance which in total gives a vector of 237 features. The
BoW is as big as the corpus vocabulary and holds a position foreach word which will be marked as
1 when the word appears in the utterance. A feature vector example representing a request to play a
specific song (vara vänner) by a certain artist (jakob hellman) follows below where the first number
means that the utterance consists of ten words, and that the words correspond to the positions in the
BoW marked with 1 and should be interpreted as the dialogue move tagsrequest(start_specific) ,
answer(item([vara v änner])) , answer(group([jakob hellman])) :

10,[b örja,toppniv å,gl ömma,man,kan,ha,hj älp,f å,avbryta,musiken,
st äng,stopp,stoppa,visa,bak åt,igen,spelningen, återuppta,allt,
listan,rensa,h öj,h öja,viss,speciell,start,b örjan,fr ån,paus,
pausa,ljudet,s änk,volymen,s änka,radiostation,v älja,spelaren,
prata,fram åt,spola,avsluta,sluta,hejd å,h örde,f örl åt,va,sa,
urs äkta,jaha,visst,ok,okej,inte,hall å,tjena,hej,nu,spelas,
heter,japp,jajamen,ja,nepp,n ä,nej,ettan,h öger,v änster,skifta,
mitten,balansen, ändra,bort,ta,tredje,tionde,sj ätte,sjunde,
andra,nionde,fj ärde,f örsta,femte, åttonde,f öreg ående,n ästa,
den,tre,tio,sex,sju,l åt,nio,fyra,fem,nummer,lyssna,h öra,1,
spela,radio,rant,stationen,gunfire,digital,l ägg,spellistan,1,1,1,
till,l ägga,l åten,skrivit,de,gjort,han,fr åga,n ågonting,l åtar,
vilka,artisten,har,vad,ytan,under,moln,ett,segla,vi ngar,grader,
hundra, åtta,tro,ska,vindarna,diamanter,vill,g öra,f år,vet,vem,
här,var,tv å,tv,p å,flickorna,tunga,k ärlekens,kr åkan,och,flickan,
hörnet,runt,himlen,du,som,precis,om,h åll,landskap, öppna,finns,
det,vargar,jagad,hellre,blir,1,mig,ih åg,kom,rummet,i, ängeln,
sarah,kort, är,sommaren,1,1,hj ärta,mitt,av,del,en,solglas ögon,
lundell,ulf,leva,di,svenningsson,uno,lemarc,peter,j ackson,
michael,nilsson,rickfors,madonna,wiehe,mikael,ryde, annelie,
lakejer,lustans,gr ön,ebba,1,1,ledin,tomas,tider,gyllene,imperiet,
freda,dahlgren,eva,eldkvarn,orup,kent,irma,d öd,docent,isaksson,
patrik,ekdahl,lisa,winnerb äck,lars,orkester,kaspers,bo,1,undantag],
[request(start_specific),answer(item([vara,v änner])),
answer(group([jakob,hellman]))].

Version: 1.0 (Final) Distribution: Public
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We tested the tagger against our test set of manually tagged user utterances from real DJ-GoDiS interac-
tions. The tagger showed a 79% accuracy on the test set where 156 were exact matches (i.e. existed in
the training corpus and likewise in our original GF grammar). These exact matches could be seen as the
grammar coverage giving a 59% accuracy which means that we have been able to boost the performance
getting a more robust interpreter by using the grammar corpus as training data. This means that we get
34% increase in tagging accuracy by using the bootstrapped tagger (significant atp < .0001) instead of
the GF grammar. We get a more robust behaviour than with the tagger and is able to interpret unexpected
expressions that are similar to the training data. A closer look at the tagging results shows that the tagger
even manages to give a partly interpretation to utterances including unknown songs i.e. an utterance such
as ”I want to add UNKNOWN” will get the tagrequest(playlist_add) . This means that the dialogue
manager will be able to take the dialogue a step forward. Thiswould not be possible with the grammar
which would fail in giving any semantic interpretation of the utterance at all.

However, this tagger does not take into account word order which means that ”John saw Mary”
will be tagged the same way as ”Mary saw John”. In our domain this order does not really mat-
ter for cases like ”Abba with Dancing Queen” or ”Dancing Queen with Abba” (both interpreted as
answer(group(abba)) ,answer(song(dancing queen)) ) as long as we do not have artists or songs
with the same name. However, in many other domains, of course, we need to be able to make this distinc-
tion. Simple cases can be solved by having an additional Bag of Bigrams (BoBi), where the bigram ”John
saw” would have a position and would be marked in the first casebut not in the second case where ”Mary
saw” would be marked instead. For the moment the utterances in this domain are simple enough to do
without this extension but a more advanced technique would be needed if you want to do more advanced
parsing.

A TiMBL classifier does not only give a class (in this case a dialogue move or dialogue move combination)
as output but can also give a confidence score for its choice. Our classifier could therefore be used to tag
utterances together with a confidence score given from TiMBLfor the choice of dialogue move tag. In
this way we could just reject dialogue moves with a confidencescore which is too low and in that way
avoid some of the incorrect tags. Additional training data could be obtained from dialogue system logs
where DJ-GoDiS were run with the simple Prolog parser. Usingthis material could improve the accuracy
even further. However, in this case we used the existing logsas test data.

2.2.2 Word-based Dialogue Move Tagger

The second tagger was generated with MBT (memory-based-tagger) [DZvdBvdS03]. The tagger genera-
tor MBT is normally used to develop part-of-speech (POS) taggers. We have used it to be able to decide
what dialogue move a word in an utterance belongs to. As training data we used the GF corpus con-
verted into a format where each line holds a word and a dialogue move. The utterance “lägg till abba på
spellistan” (Eng. add Abba to the playlist) is represented as follows:

<utt>
l ägg request(playlist_add)
till request(playlist_add)
abba answer(group(abba))
på request(playlist_add)
spellistan request(playlist_add)
</utt>

Version: 1.0 (Final) Distribution: Public
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We generated a tagger that for known words takes into accounttwo tags before the focus word
to be tagged and two words after. For unknown words the taggerlooks at the previous tag and
at the first four letters of the focus word for clues. This means that the tagger can tag unknown
words correctly by identifying a known lemma (e.g. “lägga”(Eng. Add) if “lägg” (Eng. Add) is
known). This contextual feature set was chosen in a development phase. Enlarging the context
on either side when tagging known words did not give any improvement but two words back and
two words ahead seemed to be optimal. For unknown words we also tested looking at suffixes
but although suffixes normally are useful for the task of POS-tagging it did not seem to be very
useful for dialogue move tagging of Swedish words where the content part of the words are more
important and is usually not placed in the end of the word. At runtime the tagger can be fed with
utterances followed by the sentence delimiter<utt> . The output of the Swedish phrase “jag vill
lägga till orup” (Eng. “I want to add Orup”) looks as follows:

jag/request(playlist_add)
vill/request(playlist_add)
l ägga/request(playlist_add)
till/request(playlist_add)
orup/answer(group([orup]))

As seen, each word will get a dialogue move tag. Unknown wordswill also get a tag but will be
indicated with // instead of /. The tagger has been tested on the manually dialogue move tagged
test set of transcribed user utterances which included for the GF grammar both unknown words
and unknown constructions. The tagger has a 79% tagging accuracy (84% for known words) on
this test set of 263 utterances where 156 are exact matches (i.e. existed in the training corpus).
These exact matches could again be seen as the grammar coverage which gives a 59% accuracy
which means that we once again have been able to boost the performance, getting a more robust
interpreter with a 34% increase in tagging accuracy. As seen, this tagger performs similarly to
the previous tagger.
The word based tagger seems to have a problem when common words occurring in song titles
appear alone (such as you, a etc.) tagging them rather as belonging to a song title instead of the
overall dialogue move. It seems that it has been over-trained on songs and groups. This could be
solved by a post-process checking if the rest of the song title words really appear in the utterance.
Another option is to retrain the tagger with songs and groupsrepresented as whole entities (e.g.
dancingqueen).

2.2.3 Dialogue Move Scores

The word based tagger makes it possible to calculate what we call “dialogue move scores” by
taking the word confidence scores from the ASR for all words tagged with a specific dialogue
move and calculate the mean confidence of these. This means that for the example above we
would get two scores: one for the dialogue moverequest(playlist_add) based on the word
confidences of four words and one for the moveanswer(group(orup)) based on the word con-
fidence of the artist “orup”. In this way we will not rely on theASR confidence score for the
whole utterance when choosing grounding strategies in GoDiS but look at the confidence score
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for each dialogue move. The GoDiS system uses a more fine-grained scale of grounding levels
than many other dialogue systems and the grounding behaviour in GoDiS is not limited to the
perception level but also chooses different strategies dependent on semantic and pragmatic un-
derstanding of the user input (see [Lar02]). In GoDiS each dialogue move is grounded separately
and the choice of grounding strategy is currently conditioned on the confidence score from the
speech recogniser for the whole utterance. However, it is often the case that some parts of an
utterance have a higher confidence rating than others (this is shown by the variation of the word
confidence scores) and a better dialogue behaviour would be for example to confirm only the
parts rated lower. This is easily done if we can obtain dialogue move scores. The GoDiS ground-
ing behaviour would work in the same way only with the minor modification that we keep track
of each dialogue move’s score instead of only the ASR confidence score. A multi-score version
of GoDiS has therefore been implemented to be prepared for the use of dialogue move scores.
From a multimodal point of view this means that we can assign optimal confidence to dialogue
moves performed through the graphical input such as a click.This makes it possible to avoid
explicit grounding of these moves.

2.2.4 Tagging N-Best Lists with Dialogue Moves

To be able to robustly tag N-Best hypotheses and their transcriptions with dialogue moves for a
re-ranking experiment we used the word based dialogue move tagger to simulate a more robust
way of parsing as we are using the SLM generated in D1.3 to produce the N-Best lists.
We will not go into detail of the re-ranking experiment as it is beyond the scope of this de-
liverable but we will give a short description to see how the tagger was used. This re-ranking
experiment is a further elaboration and adaptation to the GoDiS environment of the work car-
ried out in [MAB+05] (see chapter 6). It shows how we can benefit from taking into account
dialogue context when re-ranking speech recognition (ASR)hypotheses. We have carried out
experiments with human subjects to investigate their ability to rank ASR hypotheses from the
DJ-GoDiS domain using dialogue context. Based on the results of these experiments we have
explored how an automatic machine-learnt ranker profits from using dialogue context features.
An evaluation of the ranking task shows that both the human subjects and the automatic classifier
outperform the GoDiS baseline (i.e. always choosing the topmost of an N-Best list) and that they
perform better and better the more dialogue context is made available. Actually, the automatic
classifier performs slightly better than the human subjectsand reduces sentence error rate 53%
in comparison to the baseline.
What we needed for the experiment to prepare the training data was a robust way to tag the N-
Best hypotheses and the manual transcriptions of the user utterances. We used the grammar to
get a grammaticality score but opted for the word based tagger for the tagging task. The test set
used in the above experiments is more extreme than the N-Bestlists we have used here as the
words in the N-Best lists are all known to the tagger as the vocabulary for the SLM is the same
as for the original GF grammar. We used the word based tagger to tag the 2654 ASR hypotheses
in our training data and the 391 transcriptions with dialogue move tags for each word. We then
took the word dialogue move tags and eliminated all duplicates to get a dialogue move tag (or
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tags) for the whole utterance. This was used as one of the features for our machine classifier.
Another feature that we were able to obtain was a list of dialogue move scores calculated from
the dialogue move word tags and the word confidence scores as explained earlier. We also looked
at the resulting dialogue moves in an N-Best list and picked out the most frequent dialogue move
of the list as an additional feature. All these features obtained with help of the dialogue move
tagger resulted in being very important factors for the re-ranking task.
We also used the dialogue move tags to be able to compare each hypothesis with the transcription
on concept level and by that automatically label all hypotheses as being conceptually similar or
not to the transcription.

2.3 Dialogue Move Prediction

In D1.3 we generated dialogue move specific language models showing that by using these we
would be able to improve recognition performance even further. However, to be able to use these
we need to be able to choose between them i.e. we need to predict what dialogue moves are to
come.
Out of the scope of task 1.4 we have carried out some work to explore dialogue move prediction
i.e. predicting what the user of a dialogue system may do in his/her next turn. We have used the
machine learner TiMBL [DZvdSvdB01] to predict user dialogue moves from information states.
Our first experiment was based on a small training data set of automatically generated logs of
information states and dialogue flow from the DJ-GoDiS application. The features considered
for the experiment were chosen from the information available in the information state in the
dialogue logs. The features selected were the previous move(PM) (i.e. the move before the
current system move), the information in shared commitments (SHCOM), the shared actions
(SHACT), the current question under discussion (QUD) and the current system move (LM).
An example of a training instance where the dialogue state isrepresented by the five features
explained above and classified with the next user dialogue move looks as follows:

ReqList,=,Add,WhGroup,ICM@ICM@AskArtist,AnsGr@AnsSo .

This corresponds to a dialogue state where:

• the previous move was a request concerning the playlist (ReqList)

• there are no shared commitments (=)

• there is a shared action of adding something to the playlist (Add)

• the question under discussion is what group to add

• the current move is a combined move of grounding moves (ICM) and a question about
what artist is under consideration (AskArtist).
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• The user move performed in this case was a combination of two answers: the name of a
group and of a song.

We obtained an accuracy of 67.51% by using the information state and classifying 19 different
classes. The classes here correspond to different dialoguemove combinations that could be of
interest to gather in the same dialogue move specific SLM (DMSLM). This means that we could
distinguish between 19 different types of DMSLMs.
Another thing to keep in mind when looking at the results is that there are no uniquely correct
matches of a dialogue move and a state as a user can choose between several possible moves in
each state. What we want is a learner that can predict the mostplausible move (or moves) to
help us choose an appropriate language model. To get a betteridea of how our learner is working
we need to look at its top choices and see if one of these corresponds to the user move which
was actually realised. Using the TiMBL verbose option “db” gave us results where this could be
investigated and from which we could calculate a more appropriate accuracy score for the task.
By only looking at the 1-Best result we got an accuracy of 67% percent. However, by considering
the two best choices the learner gives us we get an accuracy of75%. Looking at the learner’s
three best choices to see if the correct class is among these gives us an accuracy of 81%.
The work described here for predicting the dialogue moves a user may perform in order to be able
to switch to appropriate language models could easily be adapted to the similar task of decoding
the dialogue move performed by a user. In this case we could use the same information as has
been used here but in addition we would have information fromthe speech recogniser available.
This could mean that that our decoding task gets much easier with more information available
than just a text string as in section 2.2.

2.4 Conclusions

We have shown that we can bootstrap dialogue move taggers in the same way we bootstrapped
statistical language models in D1.3 by generating trainingcorpora from GF grammars. Our dia-
logue move tagger performs better than our interpretation grammar just as the SLMs performed
better than the ASR grammars. However, we have also shown that we would probably get a
much better performance if we took into account dialogue context in the semantic decoding pro-
cess just as was done for the task of predicting the next dialogue move in order to choose the most
appropriate SLM and for the task of re-ranking N-Best lists.This is something that would be eas-
ily done in an ISU-based framework by using the information state as an additional knowledge
source when parsing the user input.
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Chapter 3

Training statistical semantic parsers from a
grammar generated corpus

In this chapter we describe models for semantic parsing thatare designed to cover more complex
semantic hierarchies. We describe the novel concept of the n-gram based semantic parser and
compare it with the Hidden Vector State Model. As in the previous chapter these models are
trained from corpora generated by a GF-task grammar, savingtime and costs of manual annota-
tion of training data. The domain is a tourist information task, where the driver of a car can ask
for information about hotels, bars and restaurants in an invented town. This task was realised in
English.

3.1 Training and Test Data

3.1.1 Collection of “Example” Utterances

A small corpus was collected for training and testing. We asked 9 co-researchers who were
familiar with the task to submit a set of 10 “example” interactions with the system and a number
of more advanced dialogues (see table 3.1). The data was divided into a development test set

Table 3.1:“Example” interactions of training and test set.
Dev Test

prompt sets 5 4
male / female users10 / 6 7 / 2
native / non-native 12 / 4 5 / 4

sentences 353 311
Words 1605 1689

(dev) and a evaluation test set (test). It was taken care thatthe sets did not overlap. The dev set
was mostly used as held out data for interpolation, selection of the best model, inspiration for
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grammar design and other purposes. The test set was used for all the test runs done in the tourist
information domain.

3.1.2 The tourist information domain

In the tourist information domain all slot value pairs and abstract concepts are linked to querying
a database containing information about hotels, bars, restaurants and tourist attractions.
As abstract concepts we used what can be considered as the most common dialogue acts such
as greetings (hello, bye), positive and negative answers to questions (affirm, negate), requests to
repeat a system response (repeat), requests for an alternative entity (reqalt) or request for more
information (requestmore).
Near relations (near) make it possible to ask for something that is close to another place. And
not relations allow recognition of phrases like “not so expensive”
Users can ask for general information about a bar, hotel or restaurant that fits their specifi-
cations (eg. cheap, central). This is reflected in the conceptsrequestbar, requesthotel and
requestrestaurant. In addition to that they can ask for the name, the telephone number, the
price or the location of a place, mirrored asrequestname, requestphone, requestprice andre-
questlocation.
There is in general a slot for each field of the data base. The field addr contains street names,
the field name was split intohotelnames, barnamesandrestaurantnames, the near relation can
take tourist attractions,attraction, or names, the price range,pricerange, can take three values:
cheap, moderate and expensive. The slotpricelimit reads a price that is specified as a number.
The slotfoodtakes different types of cuisines anddrinkstakes different beverages. There are five
different townareas. Other slots take room types, stars, music, booking day, currency, numbers,
...
All slots accept the value “dontcare”, indicating user responses likethe price is not importantor
doesn’t matter where it is. Even a unspecified “dontcare” is allowed, when the user just utters
I don’t carewithout indicating a specific slot. In this work the view on semantic parsing is that
the parser can only use information provided in the sentenceand does not take previous system
responses into account. It is assumed that the dialogue manager will resolve any ambiguities that
result from this.
The grammar was designed to cover user utterances that couldoccur in the pursuit of these tasks.
The dev set was used as an inspiration for grammar writing. Especially for partial tasks where
no example utterances could be found in the dev set other sources would have been used as
well. The grammar writer knew the test set but did not consciously include phrases from it in the
grammar.

3.1.3 Generating a Training Set with a GF-Grammar

The HTK task grammar that was used in D1.3 was ported to GF. Theabstract syntax was used to
model the words of a sentence. The concrete syntax was used tomodel the hierarchy of semantic
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concepts. By removing the semantic concepts out of the concrete syntax a word grammar is
generated as it was used for the training of statistical language models in D1.3. This has two
advantages:

1. Removing all semantic concepts from the concrete syntax is very easy and can be done au-
tomatically. Therefore only one grammar must be maintainedfor training semantic parser
and statistical language model of the speech recogniser.

2. The translate-function of GF can be used to implement a basic semantic parser. GF can
translate from a word only grammar, using a concrete syntax with no semantic concepts,
into a semantic grammar, which has semantic concepts specified in the concrete syntax.
Both grammars use the same abstract syntax.

The corpus was generated using tools of GF and HTK. Both toolsfeature random generation
of sentences. GF can output all different sentences that arepossible in a grammar. The output
combines the actual words that were uttered in a sentence with a semantic annotation. In this
format the example sentence used above would have the following form:

I am looking for an up market French restaurant and a budget hotel in the town centre.

I am looking forrequestrestaurant(anpricerange(=expensive(up market))
food(=French(French)) restaurant) and

requestrestaurant(a pricerange(=cheap(budget)) hotel in thearea(=centre(town centre)))

This format is then translated into a HVS style input format or the input format for the n-gram
based semantic parser.

3.2 A hierarchical Model for Semantics

All semantic parsers described in this chapter are based on asemantic models that uses a tree
hierarchy, where concepts that belong together can be grouped together under the same hierarchy
level. Figure 3.1 illustrates this using an example sentence. The semantic hierarchy can either
be written in a bracketed formalism or be displayed as a tree.It consists of slot-value pairs and
abstract concepts. In the example sentence “requestrestaurant()” or “requesthotel()” would
be instances of abstract concepts. Their child nodes are usually other concepts. “pricerange=
expensive” or “area= centre” would be instances of slot-value pairs.
Values are clearly linked to trigger words or phrases in the sentence. The relations between
the word “centre” and the valuecentreor the words “up market” and the valueexpensiveare
indicated by dashed lines in the tree. Slots like “pricerange” or “food” are mostly determined
by the values that they can take and whether the abstract concept above them can take them as a
child node.
Abstract concepts are mostly determined by the parent node they can attach to and the child
nodes they can expand into. They are also associated with words in the sentence, although this
relation is not as explicit as in the case of values, as indicated by dashed lines in the tree.
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Figure 3.1:Example of a semantic hierarchy displayed as a tree or in a bracketed formalism.

  I'm looking for an up market French restaurant and a budget hotel in the town centre. 

Sentence

request_restaurant request_hotel

food

French

pricerange

expensive

pricerange

cheap

area

centre

Sentence( requestrestaurant(pricerange= expensive, food= French)
requesthotel(pricerange= cheap, area= centre)

)
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In the following semantic parsing will be viewed as a procedure to associate the correct semantic
tree with a sentence or to associate only partial trees to thesentence.

3.3 Semantic parsing with a GF grammar

Many dialogue systems still use recognition grammars for semantic decoding. Since we have a
GF grammar available, we can directly use it as a semantic parser.
The advantage of directly using a grammar is, that if a sentence gets parsed, the semantic tree or
in the case of ambiguity the set of semantic trees will be perfect parses. The problem with this
approach is that only trees that are explicitly coded in the grammar can be parsed. For a grammar
that is used to generate training sentences for statisticalmodels it is sufficient when phrases are
roughly generated in the correct context. It is not necessary to model every detail, as it would be
the case for a grammar based semantic parser.
Both dev set and test set were parsed with the generation grammar. 97 out of 353 sentences of the
dev set could be parsed. Parsing of the test set succeeded in 72 out of 311 sentences. Especially
long sentences providing a number of slot value pairs failed. For short answers the grammar
worked quite well.

3.4 A n-gram Based Semantic Parser

A n-gram based semantic parser looks like an ordinary n-gramlanguage model, the only differ-
ence is that the words are semantically enriched. The n-grampart of the model can be regarded
as a framework to make sure the calculations can be done efficiently and from left to right, as the
word stream comes out of the recogniser. The semantic model is coded in the training data.

3.4.1 Semantic Model

The semantic model of the n-gram based parser is encoded in the training data which consists
of training sentences of semantically enriched words. These were generated with a grammar,
as described in section 3.1.3. This material was converted into a stack based annotation. As
displayed in figure 3.2 each semantically enriched word consists of the orthographic form and a
semantic stack.
In the actual format used by the tools in this investigation different stack layers would be delim-
ited by a dot “.”. Values start with a ˆ symbol and the last dot separated segment would always
contain the orthographic form of the word. An example is given in figure 3.3.
Each orthographic word would have several entries in the vocabulary with different semantic
stacks attached. The training of this model is simple, once atext is semantically annotated, since
it only involves counting n-grams of semantically enrichedwords. Well established language
modelling techniques such as backoff and smoothing can be used.
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Figure 3.2: Stack based annotation for the training of n-gram based semantic parsers.

I am looking for
requestrestaurant

an

requestrestaurant
pricerange=expensive

up

requestrestaurant
pricerange=expensive

market

requestrestaurant
food=French

French

requestrestaurant
restaurant and

requesthotel
a

requesthotel
pricerange=cheap

budget
requesthotel
hotel in the

requesthotel
area=centre

town

requesthotel
area=centre

centre

Figure 3.3: Actual format used for the training of n-gram based semantic parsers.

I
AM
LOOKING
FOR
REQUEST_RESTAURANT.AN
REQUEST_RESTAURANT.PRICERANGE.ˆEXPENSIVE.UP
REQUEST_RESTAURANT.PRICERANGE.ˆEXPENSIVE.MARKET
REQUEST_RESTAURANT.FOOD.ˆFRENCH.FRENCH
REQUEST_RESTAURANT.RESTAURANT
AND
REQUEST_HOTEL.A
REQUEST_HOTEL.PRICERANGE.ˆCHEAP.BUDGET
REQUEST_HOTEL.HOTEL
REQUEST_HOTEL.IN
REQUEST_HOTEL.THE
REQUEST_HOTEL.AREA.ˆCENTRE.TOWN
REQUEST_HOTEL.AREA.ˆCENTRE.CENTRE
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3.4.2 n-gram semantic decoding

Parsing a sentence involves expanding all orthographic words of a sentence into a network with
all words given all possible semantic prefixes and searchingthe best path in this network. The
Viterbi Algorithm provides an efficient solution to this problem. In this work, the model would
first consider only transitions of the order of bigrams or higher. Only if no bigram transition was
found it would resort to using unigrams.
Apart from the n-gram or Markov Assumption this model does not presuppose any semantic
theory. The semantic theory is coded in the semantic annotation of the training material. Using
a semantic stack is only one possibility of realising n-grambased semantic parsers.

3.4.3 Experiments and Results

To investigate how much training data a n-gram based semantic parser needs to work properly
and to investigate the influence of the length of the word history n on the quality of the parsing
result, the grammar of section 3.1.3 was used to randomly generate a training corpus of one
million sentences of semantic words. The n-gram based semantic parser was trained on the
first 1000, 10000, 100000 and 1000000 words of the corpus. Thelength of the word history
n was varied between 2 and 5. All n-grams were built with modified Kneser-Ney backoff. The
evaluation was carried out on two test sets consisting of invented dialogues. The dev set was used
to build the grammar, which means the grammar would contain alot of the phrases that are in
this data set. It is very likely that some of those appeared inthe training data for the n-gram based
semantic parser. Similarly, the test set is only based on invented dialogues and this is not ideal,
but it is currently the best available approximation to an independent test set until recordings of
interactions of real users with a real system become available.
The parses of different models were evaluated against manual reference annotations. Each model
was evaluated twice:

• In the deep evaluation, a tree was assumed as the theoreticalmodel. The evaluation was
performed top to bottom, which means, that the full stack must be identical with the refer-
ence to be counted as correct.

• In the shallow evaluation, only leave nodes were evaluated.Hierarchy was only considered
in a limited number of concepts e.g. in “not” relations as in not.pricerange=expensive
relating to the phrasenot too expensiveor in near relations, like near.hotelname=”Royal
Hotel” corresponding to the phrasenear the Royal Hotel. Leaf nodes can be concept-value
pairs or just concepts. In the case of short and simple sentences this kind of evaluation is
often sufficient and realistic.

In both cases identical items in the parse were merged and only evaluated once. That means if
requestbar was attached to the wordsa andbar, this would be regarded only as one instance of
this concept. Precision and recall were calculated. The harmonic mean of these two values, also
called f-measure was used as an evaluation metric.
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Figure 3.4:Results of a deep evaluation of the n-gram parser.
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The top plot of figure 3.4 shows two distinct clusters of lines. It is not surprising that all models
performed better on the dev set than on the test set and that increasing the number of training
sentences gives better results. Above 100000 sentences theperformance on the dev set improve
only marginal. On the test set the results even decrease. Allmodels achieve their best perfor-
mance of 69% on the test set for a training set of 100000 sentences. Results for 4-grams and
5-grams are identical, probably because non of the 5-grams in the models occurs in the test set
or dev set. The best performance of the dev set was 83% and achieved with a trigram model
trained on one million words. This is the same model that produces the outlier on the test set.
The bottom plot of figure 3.4 shows that bigrams and trigrams yield almost identical results as
higher order models. It seems that the semantic annotation of the previous word carries a lot of
information already such that it is not necessary to look further ahead.

Figure 3.5:Results of a shallow evaluation of the n-gram parser.
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Figure 3.5 shows the results of the shallow evaluation. The general impression is very similar to
the deep evaluation, however the f-measures of the dev set isaround 5% to 10% higher than in
the deep evaluation. The best result on the dev set was the onemillion word trigram with 89%
and for the test-set it was the 100000 and the one million wordbigram models that reached the
best performed best with 72%.
Bigrams and trigrams seem to be very well suited for n-gram semantic parsing. This is an im-
portant result, as it allows the parsing algorithm to be keptsimple and efficient.
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3.5 A Hidden Vector State Semantic Parser

The explanation of the Hidden Vector State Model in this section follows in large parts the de-
scription given in [HY05]. Considering the semantic parse tree shown in figure 3.1, the semantic
information relating to each word is completely described by the sequence of semantic concept
labels extending from the preterminal node to the root node.If these semantic concept labels are
stored as a single vector, then the parse tree can be transformed into a sequence of vector states
similar to the one shown in section 3.4.1. Viewing each vector state as a hidden variable, the
whole parse tree can be converted into a first order vector state Markov model.
Each vector state is in fact equivalent to a snapshot of the stack in a push-down automaton. In-
deed, given some maximum depth of the parse tree, any Probabilistic Context-Free Grammar
(PCFG) formalism can be converted to a first-order vector state Markov model. If we view each
vector state as a stack, then state transitions may be factored into a stack shift byn positions
followed by a push of one or more new preterminal semantic concepts relating to the next input
word. If such operations are unrestricted, then the state space will grow exponentially and the
same computational tractability issues of hierarchical HMMs are incurred. However, by impos-
ing constraints on the stack operations, the state space canbe reduced to a manageable size. Pos-
sible constraints to introduce are limiting the maximum stack depth and only allowing one new
preterminal semantic concept to be pushed onto the stack foreach new input word. These con-
straints ensure that the size of the underlying probabilitytables are linear in stack depth, number
of concept labels, and vocabulary size. Such constraints effectively limit the class of supported
languages to be right-branching. Although left-branchingstructures do exist in English, the ma-
jority of sentences can be represented as right-branching structures. In addition, right-branching
structures are generally preferred because they reduce theworking memory needed to represent
a sentence [Phi95].
Although any parse tree can be converted into a sequence of vector states, it is not a one-to-one
mapping and ambiguities may arise. However for the semanticparsing task defined here, what
we are interested in is not the exact parse tree to be recovered, but are the concept/value pairs to
be extracted. Even if there are ambiguities, the extracted concept/value pair will be the same. For
example, assuming A and B are semantic concept labels and x and y are words, the partial parse
trees B(A(x) A(y)) and B(A(x y)) would share a common HVS representation and hence would
yield the same concept/values B.A=x and B.A=y. If the entities x and y were actually distinct,
then the preterminal labels would have to be made unique.

3.5.1 Definition of the HVS model

The joint probabilityP(N,C,W) of a series of stack shift operationsN, a concept vector sequence
C, and a word sequenceW can be decomposed as follows

P(N,C,W) =
T

∏
t=1

P(nt |W
t−1
1 ,Ct−1

1 )P(ct[1]|Wt−1
1 ,Ct−1

1 ,nt)P(wt |W
t−1
1 ,Ct

1) (3.1)

where
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• Ct
1 denotes a sequence of vector statesc1..ct . ct at word positiont is a vector ofDt semantic

concept labels (tags), i.e.ct = [ct[1],ct [2], ..,ct[Dt ]] wherect [1] is the preterminal concept
immediately dominating the wordwt andct [Dt] is the root concept,

• Wt−1
1 Ct−1

1 denotes the previous semantic parse up to positiont −1,

• nt is the vector stack shift operation and takes values in the range 0, ..,Dt−1,

• ct [1] = cwt is the new preterminal semantic tag assigned to wordwt at word positiont.

The stack transition fromt −1 to t given preterminal semantic concept tagcwt for word wt is

ct [1] = cwt (3.2)

ct [2..Dt] = ct−1[(nt +1)..Dt−1] (3.3)

Dt = Dt−1+1−nt (3.4)

Thusnt defines the number of semantic tags which will be popped off the stack before pushing
on cwt . The casent = 0 corresponds to growing the stack by one element i.e. entering a new
semantic tag. The casent = 1 corresponds to simply replacing the preterminal at word position
t−1 bycwt at word positiont, the rest of the stack being unchanged. The casent > 1 corresponds
to shifting the stack i.e. popping off one or more semantic tags.
Equation 3.1 is approximated by

P(nt |W
t−1
1 ,Ct−1

1 ) ≈ P(nt |ct−1) (3.5)

P(ct [1]|Wt−1
1 ,Ct−1

1 ,nt) ≈ P(ct [1]|ct[2..Dt]) (3.6)

P(wt |W
t−1
1 ,Ct

1) ≈ P(wt |ct) (3.7)

3.5.2 Training assumptions

The HVS model needs the following resources for training:

• A set of domain specific lexical classes. For example, in an tourist information domain,
it is possible to group all names of tourist attractions intoone single classATTRACTION.
Such domain specific classes can normally be extracted automatically from the application
domain database schema.

• Abstract semantic annotation for each utterance. Such an annotation need only list a set
of valid semantic concepts and the dominance relationshipsbetween them without consid-
ering the actual realised concept sequence or attempting toidentify explicit word/concept
pairs.

The provision of abstract annotations implies that the dialogue designer must define the seman-
tics that are encoded in each training utterance but need notprovide an utterance level parse.
It effectively defines the required input-output mapping whilst avoiding the need for expensive
tree-bank style annotations. For example, in a tourist information domain, a dialogue system
designer may define the following hierarchical semantic relationships:
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• REQUESTRESTAURANT(PRICERANGE NEAR(ATTRACTION))

• REQUESTPRICE(RESTAURANTNAME)

• · · ·

Having defined such a set of hierarchical semantic relationships, annotation is simply a method
of associating the appropriate semantics with each training utterance and does not require any
linguistic skills. For example, when building a system fromscratch, a dialogue designer can
take each possible abstract schema in turn and give examplesof corresponding natural language
forms, as in

REQUESTRESTAURANT(PRICERANGE(X) NEAR(ATTRACTION(D)))→
1. I would like a X restaurant near the D.
2. find me a restaurant close to D that is X.
3. I am looking for something X to eat somewhere around D.

In this experiment we used a grammar to generate a corpus thatprovides both the surface form
and the corresponding semantic annotation.

3.5.3 Training

The first step needed to train the HVS model is to replace all class members by their corre-
sponding class names. Where there is ambiguity, the class covering the largest span of words is
replaced first. Where a word or phrase may occur in more than one class, the first class encoun-
tered is chosen arbitrarily.
In a second step the vector state sequence will be expanded from the abstract annotation and the
appropriate concepts will be attached to the correspondinglexical Concepts. If there are more
words than vector states in the sequence, new vector states with the conceptDUMMYin the bottom
position will be added.
Note that this final set of vector states only provides the setof valid semantic vector states that
can appear in the parse results of the current utterance. As explained further below, this set is
used as a constraint in the EM re-estimation algorithm. It does not define the actual vector state
transition sequence. Further note that the total number of distinct vector states required to use
the HVS model for a particular application can be enumerateddirectly from this expanded vector
state list.
The system only allows theDUMMYtag to appear in preterminal positions, therefore, for consec-
utive irrelevant word inputs, the model will stay in the samevector state. Only when a relevant
word input is observed will theDUMMYtag together with zero or more preceding semantic tags be
popped off from the previous vector state stack and a new preterminal tag will be pushed into the
stack accordingly.
The training starts with a flat initialisation. Then all parameters are iteratively refined using an
EM based re-estimation procedure. There are no explicit word level annotations in the training
corpora, hence parameter estimation based on event counts cannot be used and forward-backward
estimation must be applied instead. Let the complete set of model parameters be denoted byλ.
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EM-based parameter estimation aims to maximise the expectation of L(λ) = logP(N,C,W|λ)
given the observed data and current estimates.
During training, two constraints are applied in the estimation process:

1. For each utterance, a state transition is only allowed if both incoming and outgoing states
can be found in the corresponding semantic annotation.

2. If the observed word is a class name (such asATTRACTION), then only semantic con-
cepts (states) which contain this class name can be associated with the word (eg
NEAR.ATTRACTION, but not REQUESTBAR). In addition, in order to cater for irrelevant
words, theDUMMYtag is allowed everywhere. That is, state transitions from or to theDUMMY
state are always allowed.

The following example illustrates how these two constraints are applied. Consider again the
annotation for the utterance “I would like a cheap restaurant near the Castle” which was in
abstract form

REQUEST_RESTAURANT REQUEST_RESTAURANT+DUMMY
REQUEST_RESTAURANT+PRICERANGE(X) REQUEST_RESTAURANT+PRICERANGE+DUMMY
REQUEST_RESTAURANT+NEAR REQUEST_RESTAURANT+NEAR+DUMMY
REQUEST_RESTAURANT+NEAR+ATTRACTION(D) REQUEST_RESTAURANT+NEAR+ATTRACTION(D)+DUMMY

The transition fromREQUESTRESTAURANT+PRICERANGE(X)toREQUESTRESTAURANTis allowed
since both states can be found in the semantic annotation. However, the transition from
REQUESTRESTAURANTto REQUESTBAR is not allowed asREQUESTBAR is not listed in the se-
mantic annotation. Also, for the lexical itemX in the training utterance, the only valid vector
state isREQUESTRESTAURANT+PRICERANGE(X)sinceX has to be bound with the preterminal tag
PRICERANGE.

3.5.4 Experiments and Results

The same grammar generated corpus was used as in the experiments described in section 3.4.3.
All other resources necessary for the training of a HVS modelsuch as

• training sentences,

• abstract semantic annotation and

• lexical classes with their corresponding word string mappings

were generated by the grammar as well. The HVS stack size was set to 5 and Witten-Bell
smoothing was used. As in the previous experiment a shallow and a deep evaluation was carried
out. Concept value pairs were only evaluated if the terminalconcept and the lexical class would
match or if the terminal concept was DUMMY and the pre-terminal concept matched the lexical
class.
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Figure 3.6:Results of a shallow evaluation of the Hidden Vector State parser.
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Figure 3.6 shows that the performance of the HVS model improves as the size of the training set
increases. For all graphs the best f-measures are obtained at 200000 training sentences. The dev
set reaches 69% in the deep evaluation. This improves to 77% in the shallow evaluation. The
best f-measure on the test set is 63% in the deep evaluation and 69% in the shallow evaluation.

3.6 Conclusion

Both statistical models show flexibility in covering unseensentences. The n-gram parser gives
better results than the HVS model. Training a n-gram parser involves only counting semantically
enriched words as provided by the grammar. This is a much simpler task than aligning a semantic
annotation using EM in the case of the HVS model. Both n-gram parser and HVS model require
careful design of the concept hierarchies to work well. Although the general impression is, that
the HVS model in its current implementation needs more tweaking to get it to work. Especially
the implementation of a “DONTCARE” value, which is a value that is possible for all slots and
can even be unspecified1.
The results in this investigation are a lower than those obtained by work on the ATIS corpus,
which is the standard corpus used for similar investigations. There are two possible explanations

1In this case it can only be classified by using the previous system dialogue act as context.
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for that. The first is that in this investigation the models were trained on randomly generated
corpora and not on a proper training set. The second is that details in the task definition such as
the integration of a DONTCARE value may have caused our task to be more difficult than ATIS.
Both statistical models are fit for being used in a dialogue system. Bootstrapping with a grammar
generated corpus works for both models, although it is necessary to further investigate how both
models can be improved by training them on real user data, without going through the pain of
manually annotating large data sets. In this respect the HVSmodel seems to be better suited.
Both statistical models outperformed the GF grammar by somemargin. In real recognition
experiments the grammar would have probably scored better,forcing the speech recogniser on a
semi-optimal path through the grammar instead of failing. This is a bit of an unfair comparison,
as the grammar was not designed to explicitly cover all sentences, but to generate a corpus for
the training of statistical models.
Future work will involve the integration of both decoders ina speech dialogue system and eval-
uating their performance under real world conditions.
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Chapter 4

Conclusion and Future Work

Semantic decoders in the form of dialogue act taggers or hierarchical parsers are an essential
component of a spoken dialogue system. When SLM-based ASR isused it can be particularly
problematic since the recognised word sequence may containspeech recognition errors or may
not be grammatical. That means robust parsing is necessary.Statistical semantic decoders pro-
vide a solution to this problem, but they need training data.Following from D1.3, this work
has investigated the effectiveness of using small development grammars to generate bootstrap
training corpora.
Investigations were conducted in Swedish in an MP3 domain using pattern matching techniques
such as TiMBL and MBT. Although these taggers were not capable of capturing deep semantic
relationships they were sufficient for the semantics of the domain. Both methods worked well
and yielded 78% accuracy. This means an important boost in performance in comparison to the
more restricted parsing behaviour of the GF grammar. Although the semantic decoders obtained
have not yet been integrated in the dialogue system they havebeen used successfully for other
decoding tasks.
For future work we will consider to make GF itself more robust. One possibility is to develop an
agenda-driven chart-based parsing algorithm for GF which will derive a set of parse items even
if the recognition is unsuccessful. By using a number of deduction and induction rules one could
paste these items, representing substrings of the input, into bigger items and thus end up with an
item covering the entire input. Using induction rules will guarantee a result but also generate a
cost representing the difference between the input being inthe language of the grammar or not.
Another strategy that we are considering is what we call ”Shake-and-Bake parsing” based on the
notion of Shake-and-Bake semantics [KS85]. The concept is quite easy. When it is not possible
to recognise an input string with a concrete grammar you check if the fully instantiated items in
the obtained parse chart can be meaningful according to the abstract grammar. This means that
when given an input such as ”runs John” we would have the abstract ruleS := NP VP (meaning
that we have an S if there is an NP and a VP without considering the order of the two latter); the
concrete rulesS -> NP VP, NP -> John andVP -> runs and the fully instantiated items for
”John” as an NP and ”runs” as an VP. These items cannot be joined to an S by the concrete rule
but they fulfill the requirements for deriving an S by the abstract rule. We can therefore use the
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obtained abstract syntax of an S with its NP mapped to ”John” and its VP mapped to ”runs” to
linearise a semantic representation.
A second series of experiments was carried out on an English tourist information domain using
hierarchical semantic decoders such as the Hidden Vector State Model an n-gram based parser.
Both models are capable of capturing semantic hierarchies of sentences. Evaluation of the HVS
model resulted in f-measures of 63% for the deep evaluation and 69% for the shallow evaluation.
The n-gram based parser reached an f-measure of 69% for the deep evaluation and 72% in the
shallow evaluation. Comparision of our results with results that we achieved on the ATIS corpus
using the HVS model suggests that our tourist information task is probably a bit harder and
that there should be room for improvement when using real training data instead of a grammar
generated corpus. We are planning to include robust semantic decoders in a speech dialogue
system to evaluate their performance in the presence of realusers.
Both investigations showed independently that statistical semantic parsers have a clear advantage
over rule based methods. Similar to our results in deliverable D1.3 we could show that training
semantic parsers on corpora that were generated by hand crafted grammars is a good method for
bootstrapping dialogue systems. Parsers created in this way can also be used to provide a raw
annotation for training data, minimising the effort of manual corrections.
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