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Executive summary

Partially observable Markov decision processes (POMDR®jige a principled mathematical framework
for modelling the uncertainty inherent in spoken dialogystesms. However, conventional POMDPs scale
poorly with the size of state and observation space. Thigrt@escribes a variation of the classic POMDP
called the Hidden Information State (HIS) model. The HISeysis based on two key ideas.

Firstly, a belief distribution over an extremely large stapace can be represented efficiently by grouping
states together into partitions. Initially, all states deemed to be in a single partition with belief unity.
As the dialog progresses, the partitions are split and hielieedistributed amongst the splits. Eventually,
some patrtitions become very low in cardinality, and in tineitlisingletons. Action selection is then domi-
nated by these low cardinality partitions. The overall lesuthat full-scale POMDP belief monitoring is
achieved without ever explicitly calculating the belief{the majority of) irrelevant states. Furthermore,
partitions are represented efficiently using tree strestuand these tree structures also provide a very
natural representation for real-world knowledge.

Secondly, although accurate belief monitoring must caersilde full state space, adequate planning can
be achieved in a more compact “summary space”. The HIS madeides a mechanism for mapping
between these two spaces and therefore allows POMDP-babeyl gptimisation and action selection to
be made tractable by performing it in in the reduced summpags.

This report describes the HIS model and the way that it is usdslild the prototype POMDP-based
system. This work is an extension of the Bayes-net base@myptesented in D4.3 [1], some of the
technical details presented in this report are thereforenson to the earlier report but are repeated here
in order to make this report self-contained.

The outcome of this work is a prototype system for the in-oarist information domain which we believe
is the first ever full-scale implementation of a dialogue agar using partially-observable Markov De-
cision Processes. The key benefits of the POMDP formulatioiclware demonstrated by this prototype
system are

¢ fully-data driven dialog policy learning using a user siatok

e explicit representation of uncertainty by maintaining egéganumber of dialogue hypotheses in
parallel

¢ ability to handle N-best output hypotheses from the recagysemantic decoder
¢ ability to recover from errors without scripted repair adiglies
e seamless integration with the recogniser providing bamgeesponse timeouts and automatic filler

"o

(“um”, “er”, etc) detection

In a preliminary evaluation held in November consisting 60 Hialogues from 40 different speakers, the
system demonstrated acceptable performance across aofamged error rates and user styles. Following,
refinements made in the light of that evaluation, the systasdeen further improved and it is now judged
to provide state-of-the-art performance. Furthermorés i only a first prototype and there are many
additional improvements that could be made including refiexet of the probability models and finding a
better summary state representation.

Most importantly of all, this prototype of the HIS system dematrates that the POMDP framework is
tractable and it can support real-world applications. Tdffers the genuine opportunity to develop a
new class of dialogue system which can significantly outgper the current generation of hand-crafted
systems.
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Chapter 1

Introduction

The structure of a conventional dialogue system is showridn E1 both in terms of a block diagram
showing the data flow, and an influence diagram showing therdégncies from one time slot (i.e. turn)
to the next.

deterministic
Sm

Pl

o Speech
| Understanding

y

Am

User |8 ,S¢>

. Speech P Am Dialog

Y Generation | Manager
m .
time t

Figure 1.1: A traditional Spoken Dialogue System along witishcorresponding influence dia-
gram

time t+1

The processing involved in a single dialogue turn procesad®liows. A dialogue manager generates a
prompt to the user in the form of a machine dialogue/sgt This is converted to an acoustic sigigy

and subsequently interpreted by the useAg@sThe user has a state which encodes both a goal to achieve
S, and the dialogue historgy. On receivingAm the user updates this state and generates a user dialogue
actA,. This is converted to an acoustic sigivgland interpreted by the system’s speech understanding
component to givé,,. The dialogue system maintains its own view of the world atesvariableS,. The
estimateA, is used to update this estimate of the machine’s state aredi lmasthis updated estimate, the
dialogue manager generates a new machine dialogu&,act

Although greatly simplified, this description of the dialegturn cycle applies to nearly all existing sys-
tems. In particular, the information state update apprdéet)) to dialogue system design can be viewed
as a direct implementation of this model [2].
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However, although it is simple and intuitive, this traditad deterministic dialogue model has a number of
severe weaknesses. Firstly, and crucially, in real systémesstimate of the user’s dialogue Agtwill be
extremely noisy. Hence, the system st8iemust be updated based on a “best gues®,and since this
best guess will often be wrong, the system state can be easiiypted by erroneous information. This
will typically lead to misunderstanding and confusion, uging a perhaps lengthy recovery dialogue to
repair it. The incidence of this problem can be reduced byingakse of a confidence measure output by
the speech understanding component. This measure praudestimate oP(Au]Yu) which is typically
compared with a threshold and based on the result ehés accepted as true, or it is queried with the
user. Unfortunately, however, confidence measures thegsale unreliable, and there is no clear basis
for setting the threshold.

A second problem with the traditional architecture is thegexh understanding errors are not the only
source of uncertainty: the user’s goals and intentions acentiain and can change over time. Thus, a
model of the user’s goals and intentions must be integratiedthe overall dialogue management process.

A final problem with the traditional architecture is the deteism itself. In order to implement optimal
dialogue strategies, a system must predict the future ieraw plan for differing eventualities. Since
exact prediction is not possible, such plans can only begtitibtic and, as with the use of confidence
thresholds, these can only be used in a very crude way by entlatstic decision process. Also, of course,
it is very hard to adapt deterministic systems from trainilaga, and in practice, adaptation is limited to
manual system tuning following an off-line analysis of gystlogs. This process is labour intensive and
cannot be extended to automatic on-line adaptation.

As has been argued previously, taking a statistical apprtmspoken dialogue system design provides the
opportunity for solving many of the above problems in a fléxiéind principled way [3, 4]. Early attempts
at using a statistical approach modelled the dialogue isyatea Markov decision process (MDP) [5], and
this approach was also explored in the TALK project [4, 6 MDPs provide a good statistical framework
since they allow forward planning and hence dialogue pajatymisation through reinforcement learning.
However, they suffer from a number of problems. Firstly, @angcially, MDPs assume that the machine
state is observable. Hence, they cannot account for eitleeuricertainty in the user stat§,(@ndS; in

Fig. 1.1), or the uncertainty in the decoded user’s dialogcted, in Fig. 1.1). Secondly, and perhaps
less obviously, the MDP approach provides a poor interfacénfegrating heuristics. The main problem
is that heuristics typically involve making hard decisidresed on the assumed system state. However,
in the case of an MDP, the assumed system state might beectofio deal with this, the state must be
expanded to include confidence measures so that the hesigsth deal explicitly with the uncertainty.
However, this rapidly leads to an excessively large staaeespnd complex heuristics.

A more general alternative to the fully observable MDP is Batially Observable MDP (POMDP) [8].
A dialogue system based on a POMDP maintains a distributien @l possible states. This distribution
is called thebelief stateand dialogue policies are based on this belief state ratiagrthe true underlying
state. The key advantage of the POMDP formalism is that itides a complete and principled framework
for modelling the main sources of uncertainty. Furthermavben cast as a so-called Spoken Dialogue
System POMDP (SDS-POMDP) [9, 10], the framework also alltvaristics to be incorporated in a
very simple way since the principal components on which theristics depend (e.&, andA,) are by
definition assumed to be true. In computational terms, tidama that in an MDP heuristics are executed
once per turn but have to be programmed to explicitly tak@atof uncertainty. In a POMDP, heuristics
are much simpler to program because the state is assumedicorhey do however have to be executed
many times per turn, once for each possible state value.

The use of POMDPs for any practical system is, however, anfstraightforward. Since a belief distri-
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butionb of a discrete stat8 of cardinalityn+ 1 lies in real-valuea-dimensional simplex, a POMDP can
be thought of as an MDP with a continuous state speeé&l". Thus, assuming that the POMDP machine
has a finite set of actions to select from, a POMDP policy is ppimey from partitions in n-dimensional
belief space to actions. Not surprisingly these are exthedifficult to construct and whilst exact solution
algorithms such as the Witness algorithm [11] do exist, tfzgly scale to problems with more than a
few states/actions. Fortunately, there are a number of whjisding approximate solutions which are
sufficiently accurate to yield useful results. Firstly, they large “master state space” required to model
real-world systems can be mapped into a more compact “suynstiate space” which although small is
sufficiently detailed to allow effective planning[12]. ®&ally, approximate solutions such as grid-based
methods[13] and point-based value iteration[14] can b tsesolve problems with several hundreds of
state/actions, and although this is still insufficient f@arming in master space, it is adequate for planning
in summary space.

Whatever approach is taken to the construction of polittesre is an other fundamental barrier to using
POMDPs in spoken dialogue systems. Real systems deal alttvagld knowledge which is complex, hi-
erachical, and multi-valued. The potential state-spa@veh a simple travel booking system is enormous.
Furthermore, dialogue acts cannot easily be enumeratediagpde finite set. The types of aaequest
inform, etc) are easily enumerated, but the arguments to suchrestse§ of places, prices, dates, etc) are
not so simple. Whereas research into MDPs was able to sigettsis problem on the grounds that only a
few global indicators needed to be modelled[15, 16], a e¢ctaim of the POMDP approach is that it is
truly holistic and, in particular, propositional contettogild not be ignored. Thus, whilst POMDPSs pro-
vide a theoretical framework for modelling complete dialegsystems, what is also needed in practice is
a framework which can integrate the applicable knowledgeasentations with the appropriate statistical
models.

This report describes the development of the Hidden InftionaState (HIS) dialogue manager which
can support POMDPs with very large hierarchical state spadde key idea of the HIS system is that
a belief distribution over an extremely large state spacebearepresented efficiently by grouping states
together into partitions[17, 18, 19, 20]. Initially, allaseés are deemed to be in a single partition with
belief unity. As the dialogue progresses, the partitiores split and belief is redistributed amongst the
splits. Eventually, some partitions become very low in gaatity, and in the limit singletons. Action
selection is then dominated by these low cardinality partg. The overall result is that full-scale POMDP
belief maintenance is achieved without ever explicitlycoédting the beliefs of (the majority of) irrelevant
states. Furthermore, partitions are represented efflgiaaing tree structures and these tree structures also
provide a very natural representation for real-world knedge.

1.1 Report structure

The remainder of this report is structured as follows. Caagtbriefly reviews the general framework of
the Spoken Dialogue System POMDP (SDS-POMDP) and chapigri&@mes how the HIS system fits into
this framework. Chapter 4 then describes the implememtatiche HIS system in some detail. Chapter 5
presents experimental results from a user trial held in Ndwer 2006 and also discusses future work and
conclusions.
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Chapter 2
The SDS-POMDP

The aim of this chapter is to review the basic POMDP equatinbkthen present a factored form called
the SDS-POMDP which is suitable for spoken dialogue syst@m&0]. This lays the foundation for
describing the HIS model in the following chapter.

2.1 POMDP Basics

Formally, a POMDP is defined as a tudl§ An, T,R,0,Z,A, by} whereSis a set of stated\, is a set of
actions that the machine may take;defines a transition probabilit(s'|s, am); R defines the expected
(immediate, real-valued) rewards,an); O is a set of observationg, defines an observation probability
P(d'|s,am); A is a geometric discount factorQA < 1; andby is an initial belief statdog(s).

The POMDP operates as follows. At each time-step, the madkiin some unobserved stades S
Sinces is not known exactly, a distribution over states is mairgdicalled a "belief statefi, with initial
belief stateby. Thus, the probability of being in stagsmgiven belief staté is b(s). Based on the current
belief stateb, the machine selects an actiap € A, receives a reward(s, a,), and transitions to a new
(unobserved) state, wheres depends only osanday,. The machine then receives an observatos O
which is dependent osi anday,. The belief distribution is then updated basedobanday,.

The belief update equations are easily derived using Bayes r

b'(s) = P(s|0,am,b)
P(0|s,am, b)P(s |am, b)
P(0'|am,b)
P(O"S’, am, b) ZSESP(S/‘aﬁh b7 S) P(S‘am, b)
P(0'|am,b)
P(0|s,am) ¥ sesP(S|am, S)b(s)
P(0'|am,b)
= k-P(d|s,am) ZSP(S’\am,s)b(s) (2.1)

wherek is a normalising constant. In equation 2.1, the summatias ke transition probability to
predict each next stat as an expectation wrt to the belief state over precedingstathe observation

5
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term before the summation weights the prediction for each states' based on the likelihood that the
most recent observatiant could have been generated fram

Note that the action taken by the machine at each time stegndepn the complete distributidm This

is often initially a flat distribution reflecting ignorancét each time-step, the belief state distribution b
is updated based on the new observation, and typically thigasult in the distribution “sharpening”
around specific states.

At each time step, the machine receives a rewdRdb, ay;) based on the current belief stdteand the
selected actioany;. The cumulative, infinite horizon, discounted reward idezithereturnand it is given

by:

R = m)\tR , 2.2
t; (bt,amt) (2.2)

_ T b (S)r (S, amy). (2.3)
2" &

Each actioray,; is determined by a polici(b) and it is the goal of the machine to find the politywhich
maximises the return. Such a policy is called an optimalgyolsince belief space is a real-valued simplex,
the policy can be viewed as a partitioning of belief space regions, where each region corresponds to
the single unique action which should be taken if the curbefief state lies in that region.

Finding the optimal policy involves using the transitiontmato predict the reward expected from each
state for each possible machine action. This is very simdahe forward-backward algorithm of E-M
and for regular fully observed Markov Decision Procesdds,dssentially a dynamic programming search
over a discrete state space. POMDPs solutions are much mmngex, however, because the state space
is effectively continuous. As mentioned in the introdunfi@xact solution algorithms do exist (e.g. see
the Witness Algorithm [11, 8]) but they can only handle venyadl problems. Fortunately, approximate
solutions can handle significantly larger problems (e.gs&s [14]).

For cases where the model is unknown or there is insufficiata th estimate accurately, on-line learning
techniques analogous to Q-learning are also possible. ¥@mge, active learning can be used to si-
multaneously update an approximate model whilst optirgisine return[21]. In the work described here,
however, a simple grid-based batch-mode Monte Carlo Iegrecheme is used (see section 4.7)[22].

2.2 The SDS-POMDP: a factored POMDP for spoken dialog
systems

Referring back to Fig. 1.1, it can be seen that the state sppcesented by the dialog modg| must entail
the user goal and dialog state and since these cannot beveths&f must correspond to a distribution
over those states. In addition, since the last user actasualsertain, it is convenient to include it also
within the unobserved state space. This suggests thatdte stace of a POMDP for dialog systems
should be factored as follows[9]. First, the unobservetkstafactored into 3 components:

s = (su,au,) (2.4)

The system stat§,, then becomes the belief stdi@vers,, a, andsy, i.e.

Sm = b(sy,au, ) (2.5)

Version: 1.0 (Final) Distribution: Public
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The observatiom is the estimate of the user dialog agt [h the general case this will be an N-best list of
hypothesised user acts, each with an associated proiaiodit

o0 = [(au>pl)>(au>p2)>'-'7(au>pN)] (26)
such that
P(&lo) = pn, n=1...N (2.7)

The transition function for an SDS-POMDP follows directly substituting equation 2.4 into the regular
POMDP transition function and making some reasonable imaggnce assumptions, i.e.

P(s|s,am) = P(S,,&; SlSu,8u,5,8m)
= P(s)/su,am)P(ay s, am)P(syls), &, Sd; @m) (2.8)
Making similar reasonable independence assumptionsdieggthe observation function gives,
P(d|s,am) = P(ds, 8y, Sy, am)
= (0 &) (2.9)

This is theobservation model

The above factoring simplifies the belief update equationessubstituting equation 2.8 and equation 2.9
into equation 2.1 gives

k-P(0a;) 5 P(sisuam)P(ayls}, am)P(sylsu, & o, am)b(su, au, Sa)
Su,au,Sd
= k-P(0]a,)P aUIS{JanZPS’«JISJamZPS’ﬁIS’«J sdamzbsuausd)
= k- P(d]a,) P(ayls,am) Z P %Isu am) ZP (Suls,, & b(su,sa)  (2.11)
———
observation user action = user goal dlalog
model model model history
model

As shown by the labelling to equation 2.11, the probabiliistribution for &, is called theuser action
model It allows the observation probability that is conditioneala;, to be scaled by the probability that
the user would spea&, given the goak, and the last system promat,. Theuser goal modetietermines
the probability of the user goal switching frog) to g, following the system prompa,. Finally, the
dialog history modelepresents the transition matrix for the dialog state camept This term allows
information relating to the dialog history to be maintairsath as grounding and focus.

2.3 POMDP Policy Optimisation and Summary Space
A POMDP policy of exactlyt steps can be described byt-atep conditional plarwhich is a branching

tree in which each node is associated with an action and aacichbis labelled by an observation (see
Fig. 2.1). To execute such a policy, the machine would firké téhe action at the root node then on

Version: 1.0 (Final) Distribution: Public
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level 1

Figure 2.1: A t-Step Conditional Plan (for a problem with Zpible observations)

receiving the subsequent observation, it would follow tbeesponding branch and execute the action at
the daughter node. This would be repeated until a leaf noder@ached — 1 steps later. Let each node
be labelled with its level and the observation that leads twhere the level at the root nodetiand at the
leaf nodes is 1. Then if the current statesjs the expected reward for a given conditional plan is given by
its value functionwhich can be computed recursively foe 1...t by

r(smyam'l')a |fT:1
V, = ’ . 2.12
1501 = { o) A5 Pl ) 5 POtV themise 212
In practice, the current state is not known, however, theeetgul value for belief stateis just
V(b) = Z b(s)V (s) (2.13)
S

Thus, the expected value function associated with a givaditional plan is a hyperplane in belief space.

If all possible t-step conditional plans are enumeratedtmfthe sefi;, the value of the best plan at belief
stateb is just

* n

VM(b) = nmec;i\&x ) b(s)V"(s) (2.14)
This is the optimal value function and the action associatigd the root node of the member fkf which
maximise&/;\‘&(b) belongs to the optimal policy. Since the value function afreglan is just a hyperplane
in belief space, the piece-wise linear convex surface fdrfrmm the upper surface of the full set of plans
defines the optimal value function. This is illustrated dmaplly in Fig. 2.2 which shows the hyperplanes
for 5 different plans in a simple binary state space. Thenagitivalue function is the upper dotted surface.
Whens = s, at the left side of belief space, the optimal value functi@fobgs to plan 1. Whea= g,
at the far right side of belief space, the optimal value fiorcbelongs to plan 5. In the middle of belief

Version: 1.0 (Final) Distribution: Public
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V(b)

Figure 2.2: Value Function Hyperplanes

space, plan 3 is optimal. Note that plans 2 and 4 do not camérito the optimal solution and can be
discarded.

In summary, an optimal policy fora POMDP is found by geneatll plans at step 1 and computing their
value functions. Then all plans at step 2 are generated liygaldl combinations of the plans at step 1
extended by 1 step, and computing their value functionggu&ri2). Any plans which do not contribute to
the optimal 2-step solution must be pruned to limit the coratwrial explosion in the number of possible
plans. The process is then repeatedifor2, 3, .... until |V;*(b) —V;* ; (b)| is sufficiently small for alb.

The above exact POMDP solution algorithm is in practiceaictible since even the most efficient algo-
rithms (see eg [11]) can only cope with a few (i.e. less thanstétes/actions/observations. Hence, in
practice, approximate algorithms must be used to find godutisns for real-world problems such as
spoken dialogue.

The full state-space of the SDS-POMDP is very large indeed, the generation of (approximately)
optimal policies requires two steps. Firstly, the full stapace, referred to as theaster spacemust be
mapped into a simplesummary spaceSecondly, the exact POMDP solution approach describedeabo
must be simplified by discretising belief space. The forneeuces the state space to a few hundred states,
and the latter makes this size of state space tractable.

Summary space mapping is relatively straightforward. Témdidea is that at each turn, immediately after
updating beliefs, the set of master staffds mapped into a much reduced set of summary sttesere
Sconsists of the topl states inS, with the highest belief, plus abstracted version&pandA,. SinceN

is typically just 1 or 2, the resulting state space is very paat. The mapping from master to summary
space is made invertable by ensuring that actions in sumspeage implicitly refer to the currently most
likely, or next-most likely user goal. Thus, for examplegcanfirm act in summary space for which
the top goal was currently “venue(hotel,location=ceftratould map back into “confirm(type=hotel,

Version: 1.0 (Final) Distribution: Public



IST-507802 TALK D:4.4 6th December, 2006 Page 10/34

location=central)” in master space. Similarly, if the nextop goal was “venue(bar,location=central”, the
summary space action “select” would map into “select(veshogel, venue=bar)” in master space.

The mapping to summary space brings the SDS-POMDP withithre&practical solutions algorithms.
These typically discretise belief space by selecting afde¢leef points which will cover (i.e. lie close to)
all of the belief states that the system is likely to encounflis set is usually constructed by running the
system in some form of simulation mode. Either by samplilognfits own distributions, or by running it
with an external user simulator.

In the simplest grid-based methods, a set of distinct bpbeits are created and value functions estimated
at just those points. This essentially reduces the probteendlassic MDP optimisation problem and all
of the solutions developed for MDPs apply. A slightly moral®rate scheme called point-based value
iteration (PBVI) discretises belief space, but then caltad a value hyperplane for each belief point[14].
For many problems, PBVI appears to be one of the most effigkgadrithms known. However, in all
grid-based methods there is a trade-off between the coiityleithe value estimation and the number of
points. In spoken dialogue applications, even summaryespae quite large and, in practice, it appears
that simple grid-based schemes often perform better thari PB].

The current version of the HIS dialog manager uses a simjidebgised batch mode Monte Carlo rein-
forcement learning scheme, which relies on an externalsisailator to drive the system through a large
number of learning cycles. It is described further below.

Version: 1.0 (Final) Distribution: Public



Chapter 3

The Hidden Information State dialog
model

Having reviewed the general form of the SDS-POMDP in the ipress chapter, this chapter derives a
specific form of SDS-POMDP called the Hidden Informationt&taodel.

Although the factoring introduced in the last chapter iphd| the size of the state spaces needed to rep-
resent real-world dialog systems would quickly render adiSDS-POMDP implementation intractable.
The dialog history component is computed heuristically asdwvill be explained later, this results in a
relatively small set of dialog states being tracked frormtter turn. However, the user goal and action
state components require reasonably accurate distrisutmbe maintained and this is not easy since the
size of the user goal space is enormous and the set of usenactinnot even be enumerated. The HIS
model deals with these two components in different ways.

3.1 User action model

Consider first the user action model. As shown by equatiofh @fthe previous chapter, the user action
component of the state space is memoryless, i.e. the valtie girevious user actioa, is not required

to apply the belief update equation. This means that theildision for a, can be approximated by
considering just those user action values which are deembeve non-zero probabilities in the current
turn. These will be precisely those actions which appeanénN-best list of hypotheses from the speech
understanding component. To guard against the case of @y rpcognition resulting in the correct
value ofa/, being dropped from the observation altogethenudl action is always included with a floor
probability representing all of the user acts not in the NSthist!

3.2 User goal component

To deal with the user goal component, it is necessary to dderhiore specific about what is meant by a
user goal The initial target of the HIS model is database inquiry aations such as traffic information,

INote that in the context of a POMDP-based spoken dialog systiee termsuser actand user actionare
synonymous.
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tourist information, flight booking, etc. In this contextuaer goal is deemed to be a specific entity that
the user has in mind. For example, in a tourist informatiostesy, the user might be wishing to find

a moderately priced restaurant near to the theatre. Thewmdd interact with the system, effectively
refining his or her query until an appropriate establishmeas found. If the user wished to find an
alternative restaurant, or even something different elytsuch as the nearest tube station to the restaurant,
this would constitute a new goal. In the HIS system, the ibmadf a dialog is defined as being the
interaction needed to satisfy a single goal. Hence by digiimithe user goal model simplifies trivially to

a delta function, i.e.

P(silsu) = 8(s, su)- (3.1)
Substituting equation 3.1 into equation 2.11 gives
V(o) = ke P(OI)P(EIam) T P(SHIS aSnan)bl o) (3.2)

To further simplify belief updating, it will be assumed ttatany timet, S, can be divided into a number
of equivalence classes where the members of each clase@tedether and are indistinguishable. These
equivalence classes will be calledrtitions of user goal space. Initially, all stateggse S, are in a single
partition pp. As the dialog progresses, this root partition is repegtsglit into smaller partitions. This
splitting is binary

p—{p,p—p} with probability P(p'|p). (3.3)

Since multiple splits can occur at each time step, this pisalit assumption places no restriction on the
possible refinement of partitions from one turn to the next.

Given that user goal space is partitioned in this way, belein be computed based on partitionsSpf
rather than on the individual states®f. Initially the belief state is just

bo(po) = 1. (3.4)
Whenever a partitiom is split, its belief mass is reallocated according to equid.3, i.e.
b(p) =P(Plp)b(p)  and  b(p—p’)=(1-P(p|p)b(p) (3.5)

Note that this splitting of the belief mass is simply a reedition of existing mass, it is not a belief update.
It will be referred to adelief refinement

3.3 Belief updating

The belief update equation for a partitioned state spacassyederived from the non-partitioned case.
Let partitionp’ consist of state$s,|s, € p'}, then summing both sides of equation 3.2 ovef ]|} gives,

L Y X (36)

As a dialog progresses, the user goal partitions are spéatedly to ensure that everything which has
been mentioned so far in the dialog is explicitly represgimehe partitions. This being so, it is reasonable
to assume that

P(a}ls,am) = P(ay|p’, am) (3.7)
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: @ : refine event space

N-Best list
of Au A 4

©

Figure 3.1: Influence diagram for the Hidden Informationt&tialog model

and

P(syls\, & Sa, am) = P(sy| ', &), Su, @m) (3.8)
Hence, using these simplifying assumptions and equat®reguation 3.6 becomes

b (P, 3 ) k-P<o’|aa>P<a;|p',an>zp<%|p',aa,sd,an>%zwb<$,sd>
& €

= k-P(d|a)P(ay|p’,am) Y P(sy|P', &}, Sd,am)b(P',S0)
S

= k- P(0]a,) P(a,/p,am) Y P(sulp’,a;,0,am) P(Plp)b(p,ss)  (3.9)
——

. S , :
observation user act dialog belief
model model history refinement
model

wherep is the parent off. Equation 3.9 is the belief update equation for the HIS matel shown in
the form of an influence diagram in Fig. 3.1. Note that in thegdam the dotted arrows represent the
influence ofa,, anda, on therefinemenbf p’ but not on its update i.e. they influence the splittingobf
but not its conditional probability.

As shown by the labelling on equation 3.9, the HIS update timudepends on four probability distribu-
tions:

1. Observation Model this is approximated by the N-best probability from theesgreunderstanding
component

PO'la) =~ K-P(&a)o) (3.10)
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2. User Action Modet} this is composed of two parts: the bigram probability of tierent user act
type given the preceding system act type, and a probabitypting the degree to which the current
user act is consistent with the given partitiph Thus,

Pa|p,am) ~ P(T(a)|7 (am))P(M (a,)|P) (3.11)

where7 (a) denotes théypeof the dialog ach, for example, the type of the act “inform(food=Indian)”
isinform. There are a total of 12 different dialog act types suppdoiethe HIS model and these are
described in detail section 4.3 (a) denotes whether or not the dialog actatcheshe current
partition p’. The first component can be estimated from a dialog corpesséhond component is
set to 1 if the act matches and zero otherwise.

3. Dialog History Model- this is entirely heuristic.

P(sylp,a,s,am) = 1 iff s is consistent withp', &, s4,am (3.12)
=0 otherwise (3.13)

The way that this is computed in the HIS model is describe@atian 4.

4. Belief Refinementthis depends on the ontology rules used to define the apiplicdomain. User
goals are built using probabilistic context free rules,hwitile probabilities se& priori. If the
sequence of rules;, r»,...,r is used to split partitiorp into sub-partitionp/, the belief refinement
probability is

k
P(p|p) = [l P(ri) (3.14)

whereP(r) is the prior probability of rule. This process is described in more detail in section 4.2.

Having described the mathematical basis of the HIS modelrémainder of this report describes its
specific implementation.
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Chapter 4

Implementation of the HIS Model

This chapter describes a specific implementation of the Hdeh It begins with a high level overview
of how the model operates. It then describes each of the neampanents in more detail.

4.1 Overview of HIS Model Operation

Before describing the details of the HIS system, it will béphd to give a brief overview of the principal
data structures and the overall operation. As shown in Fify. #he inputs to the system consist of an
observation from the user and the previous system act. Téeredtion from the user typically consists of
an N-best list of user acts, each tagged with their relatrebability. The user goal is represented by a set
of branching tree structures each of which initially conhsijust a single node. These tree structures can
be grown downwards by applying ontology rules which desctite application domain. For example,
there might be a rule which states thatemue can be either &ot el , arestaurant or abar. In each
case, the derived venues will have further nodes descritgiatyres of that type of venue. Ambiguity is
represented by allowing nodes to expand into multiple adtéives. Each distinct tree forms a partition
of user goal space as described in section 3. The initialesinge node represents a single partition with
belief unity. As the trees are grown, the partitions are agpdly split allowing the belief assignment to
be refined. Eventually, the hope is that a single complegewi# be formed which represents the actual
user's goal and that this tree has a high belief.

The tree growing process is driven entirely by the dialog aatchanged between the system and the
user. Every turn, the previous system act and each inputactds matched against every partition in
the branching tree structure. If a match can be found themrécorded. Otherwise the ontology rules
are scanned to see if the tree representing that partitiorbeaxtended to enable the act to match. For
example, if the act wasequest (ensuite), and the partition represented the higher level noelaie,
then the venue node would be extended to a hotel node witkiatst properties, one of which would be
ensui te. Therequest (ensui te) act would then match. Note however that an ontology rule eamsed

to extend a specific node just once. This ensures that aitipast are unique and there are no duplicates.
Once the matching and patrtition splitting is complete, ladl partitions are rescanned and where possible
each hypothesised input user act is attached to each gartBimilarly the system act is attached to each
partition (not shown in the figure). The combination of a p@r and an input user a¢p, a,) forms a
partial hypothesis and the user act model probability isudated as in equation 3.11.
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Figure 4.1: Overview of the HIS System operation

As explained above, partitions are grown based entirelyialogl act inputs. If the user (or the system)
mentions a node such assui t e this will cause other nodes to be created. The groundingsstateach
tree node is recorded in a dialog state data structure. Simcgrounding status of a tree node can be
uncertain, any(p,ay) pair can have multiple dialog states attached to it. Howewelike the user act
component of the state which is memoryless, the dialog commtsy evolves as the dialog progresses.
Thus, at the beginning of each dialog cycle, the variousodiaitate instances are attached directly to
the partitions. Once the input user acts have been attachib partitions, the current dialog states are
extended to represent the new information in the dialog. a&tghis point, the dialog state probabilities
given by equation 3.13 are computed. At the end of the tuemtidal dialog states attached to the same
partition are merged ready for the next cycle.

Every triple (p,ay,Sq4) represents a single dialog hypothelsis The belief in eactny is computed using
equation 3.9 and the complete set of valbé) represents the current estimate of the POMDP belief
state in master space. This belief state is then mapped tmanspace and input to the POMDP policy
which yields a high level strategic summary space actions $tiategic action defines the broad class of
response (e.g. request more info, clarify, confirm, etc)whith set of hypotheses it refers to (topmost,
top-two, rest). Given this strategic action and the infdiorain the relevant partitions and dialog histories,
the action refinement heuristics map the summary spacendsdick into master space where it generates
a specific system action.

A screen shot of the HIS system in operation is shown in Fig #it& main central display shows the top
few hypotheses. Above this is the recogniser output andibate the semantic decoder inputs from the
previous turn (left) and the current turn (right). In the ight, is a text version of the speech output.
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5.9 =3=afs=
9.1: =5=|'D LIKE A RESTAURANT PLEASE =/s=

16.1:
248
355
46.4:

=s= YES IN THE CENTRE OF TOWWN </s=

=3= YES A FRENCH RESTAURANT IN THE CENTRAL PART OF TOWN =is=
=== SOMETHING CHEAP =/s=

=== I'D LIKE A MODERATELY PRICED FRENCH RESTAURANT <fs=

In the moderate pricerange |
can recommend Chez Serqu

<s> I'D LIKE A MODERATELY PRICED FRENCH RESTAURANT </s>

Time494s Scorc[ HuM sil HNAct 2623 Mode CSSA

Status
.

o
=
=+

Belief

Meaning
1find{venue{restaurant(food=French pricerange=moderate music),area=central))

1 findivenue(restaurant(food=French pricerange=cheap,music),area=central))
.1 find{venue(restaurant(pricerange=cheap,music),area=central))

14/118 .1 find{venue(restaurant{pricerange=cheap,music)j)
- 1find{venuefbar(pricerange=cheap),area=central))
194128 1 find{venue(bar(pricerange=cheapl))

17100 1

- 1 find{venue{restaurant(food=French pricerange=cheap music)))
- 1find{venuethotel(pricerange=cheap),area=central))
174124 1findivenuethotel{pricerange=cheap)))

- .1 find{venue(area=central))

3132 1 find{venue)

- 1find{venuethotel area=central))

S/110 1 findivenuethotel))

27 Hyps, 26 Parts O

1 request{restaurant,pricerange=moderate.food=French)

2 null{)

1find{venuefbar,area=cential))

inform{name=Chez Sergu.pricerange=moderate) [Inform]

0.77
0.23

Figure 4.2: Screenshot of the Prototype HIS System
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4.2 User Goal Trees and Ontology Rules

User goals are represented by a branching tree structursentierarchy reflects both the natural structure
of the data and a natural order in which to introduce the iddizl concepts into a conversation. User goal
trees are constructed from four types of tree node:

1. class nodes - these have non-terminal offspring. Cona#ipta class node represents an instance
of a type, and the offspring of the node denote the membeitsabtype.

2. lexical nodes - these have only terminal offspring i.enz.

3. subclass nodes - these have no offspring. They act likg otthe parent node indicating a par-
ticular flavour of that class. They are provided mainly fotatmnal convenience, especially in the
way that database entitities are defined.

4. atomic nodes - these are the offspring of lexical nodegyTepresent actual values suchHasel
G and, Jazz, yes, 27, etc.

An example of a fully expanded user goal tree is shown in Fig. Zhis example is a simplified repre-
sentation of a restaurant. The top level node representsbéragy entity. It has a subclas®nue and
corresponding subclass membeype, nane, andl ocati on. These members are generic for any kind
of venue (e.g. restaurant, bar, hotel, etc). In this casethe is a restaurant with restaurant-specific
class memberkood, nmusi ¢ anddecor. The location is specified as a specific address and therefmre
astreet member. It could have been specified by some other means suehrd o, gri dr ef , etc, and
these would be alternate subclasses of location.

restaurant

Italian Jazz Roman Toni's Main Street

Figure 4.3: Example Fully Expanded User Goal Tree

User goal trees are built using a set of rules which adhefleeteyntax set out in Fig. 4:4As an example,
the rules set out in Fig. 4.5 describe the restaurant goalrithesl above. There are two basic forms of
rules: class definition rules and lexical definition rulesieTbasic function of these should be clear from
the table, however, some of the details require furtheramation.

LAtomic names containing non-alphadigit characters musirtméosed in double quotes
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ruleset = ruledef";" { ruledef ";" } {dbasefile}

rul edef = classdef | |exdef

classdef = classinst "->" [subclass] [classbody] [prob]
cl assbody = "(" [opt] nenmber { "," [opt] nmenmber } ")"

| exdef = classinst "=" "(" atonfprob] {"|" aton]{prob] ")"
prob ="{" float "}"

opt ="t e

classinst = name {"." nane}

member = nane

subcl ass = nanme

atom = nane

dbasefile = "+" "fil ename"

Figure 4.4: Syntax of HIS Ontology Rules

Firstly, the members of a class can have an optional “+” ospécifier indicating that the node is primarily
selectionalor informational respectively. These markers are optional and only inflaghe selection of
system responses. The plus specifier indicates that a \&h@mally required for that member in order
to identify the requested entity. Conversely, the minusHige indicates that the member will rarely be
specified by the user to identify the entity but does contafarmation that the user may wish to know
about once the entity has been selected. In the example tlsfood type is marked with a “+” since itis
frequently specified by users in order to identify a suitalelgtaurant, whereas thlecor is marked with

a “-" since it is rarely specified by users when searching foappropriate restaurant. It might, however,
be required once a candidate restaurant has been located.

Secondly, note that in the left hand side of class definitidas, a simple name can be qualified using a
dotted path notation. This is provided as a convenienceddw @eneric labels such asne to be used in
different contexts, and then specific instances identifiedhe example, the lexical definition foare is
qualified byvenue to distinguish it from other types of name.

Finally, all rules can have a probability assigned to themhevé no probability is given, then equal
probability is assumed. These probabilities represeit fmowledge. In the example, the venue type is
restaurant with probability 0.35. This would reflect thetftat in practice when users want to locate a
venue, 35% of the time they require a restaurant. As expdaimsection 4.4, these prior probabilities are
used to reallocate belief mass when a partition is split.

The ontology rules defined above describe the structureeotittia. The data itself must be stored in a
second file in the form of entity definitions, where each gntibnsists of a list of attribute value pairs.
An example entity definition is shown in Fig. 4.6. Entity défons must begin with and attribute and
should normally includenane andt ype attributes. All remaining attribute-value pairs are admy but
must be consistent with the rules. For example, all valuestmppear in at least one lexical definitfon
The HIS system attempts to interpret attribute value paiesflexible way. For example, given the location
rule in Fig. 4.5, an address could be specified by anyaoitr ("Main Street"), [ ocation("Min
Street") orstreet("Main Street"). Note, however, that if there was also a rule such as

2Numbers are dealt with as a special case
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entity -> venue(type, nane, | ocation) {0.2};

type -> restaurant (+f ood, nusi c, -decor) {0. 35}

| ocation -> addr(street) {0.8};

venue.name = ("Toni’s","Quick Bite", ....);

f ood = (Italian, Chinese, English, ...);

musi ¢ = (Jazz, Pop, Fol k, ...);

decor = (Traditional, Roman, ArtDeco, ...

street = ("Main Street", "Market Square", ...);

Figure 4.5: Example of using Ontology Rules

id("R23")

name(" Toni’s")
type("restaurant")
food("Italian")
addr("Main Street")
near (" C nem")
phone("2095252")
decor (" Roman")

Figure 4.6: Example Database Entity Definition

| ocation -> nearto(street);

then the latter two forms would be ambiguous.

4.3 Dialog Acts

As shown in Fig 4.7, a dialog act consists of a type and a ligeod or morenane=val ue pairs referred

to asi t ens. An item name refers to a node in a user goal tree, it can be@einame or a qualified name
where the qualifier is either the name of the parent node andhee of the parent’s subclass, if any. There
may be zero or many items in a single act, and the interpogtatepends on the act type of which there
are 15 in total.

The full set of acts supported by the HIS system is summaiisd@dble 4.1. The meaning of each act

qualifier name value

acttyp(em a [‘=X]‘, )‘

item

Figure 4.7: Structure of a Dialog Act
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should be clear from the table, but the following amplifiesumber of important points.
Firstly, the HIS system does not support multiple dialog @tta single turn. Thus, for example, if

U inform(food=Italian)
U inform nusic=Jazz)

is input to the system, it is interpreted as

U infornm(food=Italian) {0.5}
U inform nusic=Jazz) {0.5}

i.e. the user said either that the food is Ital@rthat the music is Jazz with equal probability. To convey
both pieces of information in a single turn, iamf or mact with two items must be used, i.e.

U inform(food=Italian, nusic=Jazz)
In some cases, items are treated differently dependingeinghbsition in the item list. For example,
S. confreq(type=restaurant, food)

is a request to confirm that the required type is restaurahttzan request a value for food. If the response
was

U affirm(type=restaurant, food=ltalian)
this would confirm the type and provide the required food infation. The sequence

S. confirmtype=restaurant)
U affirm)

is identical to

S. confirmtype=restaurant)
U affirm(type=restaurant)

If negat e is used, however, the first item is taken to be a correction the response
U. negat e(f ood=Russi an)

would be interpreted as “No, | want Russian food”. To refuspacific valuegeny is used, for example
U deny(food=Italian, food=Russian)

means “The food is not Italian, it is Russian”.
There is a special qualifieror e. This can be used only inside a user request act and a systiag) het,
for example,

U request (nore)
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Act System| User | Description
hello() start dialog
hello(more) prompt for more
bye() end dialog

inform(a=x,b=y,...)
inform(name=none)
request(a,b,...)
request(more)
request(more.a)
confirm(a=x,b=y,..)
confreq(a=x,..,c=z, d
select(a=x,b=y)

give information a=x, b=y, ...
inform user that no suitable entity found
request values for a,b, ...

request more information
request more information about a
confirm a=x,b=y,..

confirm a=x,..,c=z and request value of/d
select either a=x or b=y

affirm() simple yes
affirm(a=x,b=y,...) confirm and give further info a=x, b=y, .|.
negate() simple no

negate(a=x,b=y,...)
deny(a=x,b=y)

no, a=x and give further info b=y, ...
no, al=x and give further info b=y, ...

repeat() request to repeat last act
reqalts() request alternative goal
reqalts(a=x,..) request alt with new information
null() null act - does nothing

XISUX XX XXX XL (X X

LR X X X U X <

xxx(a=dontcare) in any info item a can be any value

Table 4.1: Supported Dialog Acts

means "Tell me more about the current suggestion” and
U request (nore. hotel.name="The G and")

means "Tell me more about "The Grand” hotel”. The system act
S. hello(nore)

means "Do you want anything more?”.

When an act is processed by the HIS system, its items are athégfainst the user goal tree. If a value is
given, then an item can only match if there is an atomic leaenweith the same value and its parent (or
the subclass of its parent) matches the name oh#ime=val ue pair. If no value is given then the name
must match a node in the tree. If the name is qualified, themudladifier must match the parent (or the
subclass of the parent) of the matched node.

User dialog acts are presented to the system as lists afaliezs. Each alternative can have a probability
attached to it. All acts without probabilities are assumedadly likely and assigned probabilities so as to
make the total sum to one. Every input list must include a diallog act with a non-zero probability. If
no null act is included, the system inserts one.
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4.4 Partitions and Partition Splitting

Section 4.2 explained how a single user goal is encoded immching tree structure. In fact, the HIS
system maintains a forest of partially and fully-expandegd. Each partially expanded tree represents a
partition of equivalent user goal states. Each fully exgahttee is also a partition, but it is a singleton
partition i.e., it encodes a single user goal state.

This forest of trees is stored in such a way that no partiteoduplicated, and the sum of the probability
of all partitions is always unity. As shown in Fig. 4.8(a),syfstem start up the user goal forest consists
of a single node calletlask. This single partitiorp has belieb(p) = 1 and it represents all possible user
goals. Since this node is built by default, all applicatiakersets must start with rules to expand this node.
Thus, in practice, the rule set shown in Fig. 4.5 must be anggdeby a rule such as:

task -> find(entity) {0.3};

which expresses the prior knowledge that 30% of the timeeawsl wish to find something (e.g. a hotel,

a restaurant etc). Fig. 4.8(b) shows what happens whenulgiss applied. The ask node is split into
two parallel nodes and the probability mass is divided impprton to the prior probability of applying
the rule. The result is two partitions with belidis= 0.7 andb = 0.3 respectively. Suppose now that the
rule forentity in Fig. 4.5 is applied, partition 2 is split to form a new p#at and the belief mass is
divided again. The result is as shown in Fig. 4.8(c). And soffocess continues. The result in this case
is three partitions which can be described via their leafasoak

P1. task {0.70}
P2: find(entity){0.24}
P3: find(venue(type, name, | ocation)){0.06}

where the belief in each patrtition is shown in braces and ydwsums to one. Note that these prior
beliefs give relatively high weight to unexpanded nodesabee they represent the largest equivalence
sets. However, once belief updating occurs, this situasauickly reversed since the evidence typically
supports only the more specific partitions.

The above explains how partitions are split but not whenabi partition splitting is entirely on demand
and it is driven by the items in the input user and system dialts. Referring back to Fig. 4.1, the first
stage of the dialog cycle is to match the items of all of theutngser acts and the previous system act
against all of the existing partitions. Note that the acktyp not relevant here since the goal is simply
to expand the partitions sufficiently to match as many asibplessf the input act items. Each item of
each act is taken in turn and applied against each existirigigga If the item matches the partition, then
the result is recorded and nothing further happens. If hewthe item does not match, then the ontology
rules are scanned and the system tests to see whether taetqartition could be extended sufficiently to
allow the item to match. If it concludes that a match is pdesithen the partition is extended and a match
is recorded. For example, if the user goal forest was as shiowig. 4.8(b) at the point when the item
(musi c=Jazz) was received, then the system would determine that a matdd be achieved by first
expanding thent i ty node using the first rule in Fig. 4.5. This node is referredstth@expansion node
The newly created offspring of the expansion node includega node and this can be expanded using
the second rule in Fig. 4.5. Finally, expanding the lexicadl@wusi ¢ to derive the atomic nodéazz
would allow the required match. Having determined that iindeed possible to constructraatching
subtreewhich if attached to the expansion node would support an itextch, then that matching subtree
is created.
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P3 | b=0.06

Figure 4.8: Example of Partition Splitting
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New matching

‘ restaurant ,
sbtreeto
atachto Jezz

[talian

Figure 4.9: Splitting a Patrtition with a Shared Expansiorslo

The detailed implementation of this splitting process medconsider a number of subtleties. Firstly,
in order to ensure that all partitions are unique, a rule ningstipplied to a node only once. This is
implemented by attaching to each expanded node, a refetertbe rule used to expand it. It is then
simple to check whether or not a rule has been applied bedotfeat node, and if it has, the rule cannot
be applied again. Secondly, when node expansion resultsiliipie levels of rule application, then new
subtree nodes will be created with probability less than dmeach such case, a new parallel node must
be created to hold thenusedprobability mass. Each new node created in this way createsweparti-
tion. An example of this is shown in Fig. 4.8 where the expamsif partitionPl: t ask to give partition
P3: find(venue(type, name, | ocation)) results in an intermediate partitid®2: fi nd(entity) being
created. In the further expansion needed to accommodaieethé nusi c=Jazz), the expansion of the

t ype node with probability 0.35 toest aur ant would leave a parallelype node with probability 0.65
and this would form yet another partition.

Finally, as an act item is tested against successive pagitthere may be other partitions which have not
yet been examined but which share the same expansion nocle oEhese as yet unexamined partitions,
must be cloned and the expansion node replaced by the lea§ mfdhe matching subtree. For example,
in Fig. 4.9, there are two partitions

Px: find(venue(restaurant(food, nusic,decor)))
Py: find(venue(restaurant(food, nusic(Jazz), decor)))

If now the itemf ood=It al i an is matched against Py, then a new partition
Pyy: find(venue(restaurant(food(ltalian), nusic(Jazz), decor)))

is created. However, the expansion néded is shared with Px, and hence a further partition
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State | Description

Init initial state

UReq | item requested by user
UInf | item informed by user
Sinf | item informed by system
SQry | item queried by system
Deny | item denied

Grnd | item grounded

Table 4.2: Node Grounding States

Pxx: find(venue(restaurant(food(ltalian), nusic,decor)))

must also be created.

4.5 Hypotheses and the Dialog History State

The previous subsections have explained how partitiongranen as a side effect of attempting to match
dialog act items. Once all input items have been processgdlapossible matches made, the next step
is to construct a new set of updated beliefs for the currealbditurn. As indicated by Fig. 4.1, belief
update is implemented by building an explicit list of hypegks where each hypothesis corresponds to
one possible combination @f, &, ands; in the left hand side of equation 3.9. At the start of each,turn
each partitionp has attached to it a list of possible dialog state recejdghere each combinatiofp, s4 }
corresponds to a summation term in equation 3.9. At the entheoturn, the current hypotheses are
updated by applying the current system dialog act and thamaess user dialog act to the current dialog
history to produce a new updated dialog history.

There are three possible values R{s|p', &, 4, am)

P(qj|p/>a{,l>sd>am) Situation

~1 a consistent history update is possible
~0 some item inp’ has been denied by the user
Prull no consistent history update is possible

whereP,, | >> 0. The idea here is that if the user act appears to be irrefewaiis hypothesis then
the hypothesis belief should not change significantly. Hemeexplicit denial should cause belief to be
reduced to close to zero. Note, however, that since a nuisatways included in the list of hypothesised
user acts and since a null act can never fail, recovery isya\passible.

The dialog state records information about the dialog hystehich is relevant to the decision making
process. Each terminal node X in the associated partitienamaassociated grounding state as shown
in Table 4.2. These states are updated according to theativandiagram shown in Fig. 4.10 where the
generic user and system acts are derived from the actuahndesystem acts as given in Table 4.3.
Figure 4.11 illustrates hypothesis updating in more dehaithis example, the system had previously out-
puti nf or n{ nusi c=Jazz) and the user’s response was eitheguest (f ood) ornegat e( not . nusi c=Jazz.
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Grnd Action | Dialog Acts

SInf(X) inform(X)

SICon(X) confreq(X,..)

SConf(X) confirm(X), select(X,..), select(..,X)
SOther all other system actions

UInf(X) inform(X), affirm(..,X), negate(X), deny(..,X), reqaltfX
UReq(X) request(X), request(more.X)
UAff() affirm()

UAff(X) affirm(X)

UDeny() negate(), negate(Y), deny()
UDeny(X) | deny(X)

UOther all other dialog actions

Table 4.3: Dialog Act Grouping for Grounding Node X

ORANGE

Coloursrefer to

UIAX) =UIrXAFEX)

HIS graphic display

Figure 4.10: Grounding Transition Diagram
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a_ al 1
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S: inform(music=Jazz) < mus c:Init>Grn§q
U: request(food)

=2
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S: inform(music=Jazz) | food: SInf>UReq
U:deny(music=Jazz) B 82 music:Init> Deny

d

Figure 4.11: Example Hypotheses

Field Description Size
P(Top) Probability of the most likely hypothesis | float
P(NXxt) Probability of the next most likely hypthesjdloat
T12Same| true if top two hyps refer to same partition| 0-1

TPStatus | Status of top partition 0-5
THStatus| Status of top hypothesis 0-4
TUserAct| Type of user act in top hypothesis 0-12
LastSA | Last summary act 0-9

Table 4.4: POMDP Summary State

Previously there was a single dialog history hypothesisedhfe given fragment of partitiop’ with both
nodes in the “Init” state. After completing the turn, there &wo distinct dialog states corresponding to
the two different intepretations of the user input.

4.6 Action Generation

Action generation follows th&ummary POMDRBcheme outlined in [12], adapted for the HIS model.
Each system responsé, is the result of a two step process:

1. the current system state is mapped into a reduce sumnadgy ahd an appropriate summary action
is determined by a POMDP policy

2. the summary action is mapped into a real action by applgingmber of heuristic rules.

The summary state is shown in Table 4.4 and the summary adi@shown in Table 4.5.
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Greet Greet the user

BoldRQ | Make a bold query request i.e. usequest ()
TentRQ | Make a tentative query request i.e. usaf req()
Confirm | Confirm an ungrounded node i.e. usmf i rm)
Offer Offer a database entity

Inform | Give more information about current offer
Split Usesel ect () to distinguish top 2 hypotheses
FindAlt | Find an alternative database entity

QMore | Query if user wants any more information
Bye Sign off

Table 4.5: POMDP Summary Actions

4.7 POMDP Training

Policy optimisation in the HIS model utilises a grid-baséstrbtisation of summary belief space and on-
line batche-greedy policy iteration. Given an existing polity dialogs are executed and machine actions
generated according toexcept that with probabilitg a random action is generated. The system maintains
a set of belief points{Bi}. At each turn in training, the nearest stored belief ptfimo b is located using

a distance measure. If the distance is greater than somshthdeb is added to the set of stored points
andby = b. The sequence of poinﬁ;( traversed in each dialog is stored in a list. Associated wétbh

bi is a functionQ(b;, 4n) whose value is the expected total reward obtained by chgasimmary action
am from statef)i. At the end of each dialog, the total reward is calculated ashdied to an accumulator
for each point in the list, discounted Byat each step. On completion of a batch of dialogs,Qhalues
are updated according to the accumulated rewards, and tiog ppdated by choosing the action which
maximises eackp value. The whole process is then repeated until the polatyilstes.

Since even the summary state space is very large, arouhdialdgs are required for policy conver-
gence and learning using real users is not practical. Hemcser simulation tool is used for training.
This consists of two main componentsUaer Goaland aUser Agenda At the start of each dialogue
the goal is randomly initialised with requests such as “rarfeddr”, “phone” and constraints such as
“type=restaurant”, “food=Chinese”, “pricerange=cheaphe agenda is subsequently populated with cor-
responding dialogue acts such as “hello”, “request(reata)i’, “inform(food=Chinese)”, etc. During
the course of the dialogue, the goal ensures that the usavéeln a consistent, goal- directed manner.
The agenda serves as a convenient way of capturing whatnafan the user intends to transmit to the

system, with the top act on the agenda representing the sexttiors,,.

At every dialogue turn, the user agenda and goal are updatEmding to the incoming system action
an using a complex set of handcrafted rules. The rules allowuties to request and provide appropriate
and/or alternative pieces of information, to affirm or negatiestions, to select between different options
and to detect and correct misunderstandings. The agendasnitgbossible to temporarily store actions
when another action of higher priority needs to be issuet, fisnce enabling the simulator to refer to
previous dialogue turns at a later point.

To introduce some degree of “life-like” randomness, ther usacts with a varying level of patience and
arbitrary choices are made during the agenda update prodessever possible. As a result, thousands of
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Figure 4.12: Average return during policy learning vs numiferaining dialogs

dialogues can be generated without seeing the same diatlogre

Speech understanding errors are simulated at the dialogjuleveel. The user action is fed through a
Scramblerwhich generates an N-best list of parsed recognition hygsath with associated confidence
scores at a given error rate. The confusion matrices foodia act types, attributes, and values and
the probability of the correct hypothesis being in the Nthiss are read from file. The parameters are
currently handcrafted but could easily be trained on reaodiue data at a later stage.

Each policy iteration uses a batch size of 5000 dialogs, tbeodnt factor is 5 andepsilonis held
constant at . The reward function returns1 per system turn and-20 if the system recommends a
venue that matches all the constraints in the user’s goalll bases, the initial policy is random.

As a typical example of training, Fig. 4.12 shows the averagigrn achieved by the HIS system at differ-
ing user act error rates when tested against the user sonalsia function of the number of dialogs used
for training. As can be seen learning increases rapidly sttdind then asymptotes. At higher error rates,
learning is slower and the asymptotic return reduces.
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Chapter 5

Evaluation and Conclusions

An evaluation of the prototype HIS system was conducted en6ifith November in Cambridge and
Edinburgh.! The task scenarios involved finding a bar, a restaurant oteld hoa ficticious town given a
set of constraints (e.g. find a cheap, chinese restauraheiogntre of town). The tasks themselves were
presented to subjects in two different ways: either as afdgtages, or as a situation scenarfo’

Table 5 summarises the outcome of the trial.

Cambridge| Edinburgh| Combined

#subjects 23 17 40

#dialogues 92 68 160
#turns 676 1240 1916
#words 3294 3373 6667
%WER 21.1 37.3 29.3
#dialogues completed 88 57 145
%completion rate 95.7 83.8 90.6
Avg. turns to completior 3.8 8.1 5.6

Objective metric 91.9 75.6 85.0

Table 5.1: Results of the HIS Dialog System User Trial

There were a total of 40 subjects who performed 4 tasks eadtialdgue was judged to be completed if
the system recommended a venue which matched the usersaintss The tasks were defined so that
every task had a solution. As can be seen, the completionvasdesignificantly higher in Cambridge

than Edinburgh. This is mostly due to the higher proportibnan-natives in the Edinburgh trial and the
conseguent degradation in Word Error Rate (WER) of the naiseg (see 3rd row of the table).

1The assistance of the UEDIN team in helping design the tasksuit subjects and run the trial is gratefully
acknowledged.

2The intention was to see how much the presentation of theitéisiences the choices of words and syntactic
forms used by subjects.

3Due to insufficient development time, the system tested hanaber of technical limitations. In particular,
only the 1-best output from the recogniser was availablethe were known to be bugs in the dialogue grounding
model.
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The average number of turns to completion was computed kEsvi&l If the correct venue was offered,
the number of turns was taken as the total up to the point ef.off no correct venue was offered, then
the total turns in the dialogue was used. As can be seen,dghethbverall WER and the lower completion
rates at Edinburgh lead to significantly extended dialogues

The objective metrie= R— N whereR = 100 if the dialogue was completed successfully and O ottsenwi
N is the number of turns. This form of metric is commonly usedystem evaluation and it is similar to
the reward function used to train the POMDP.

In summary, the system as tested was very preliminary arrd thea great deal of refinement still to do.
Nevertheless, the results of this trial suggest that the BONdased HIS system is viable for building
robust real-world dialogue systems. Across the range ofiveoror rates encountered, an average com-
pletion rate above 90% is considered very respectable. @udichl-best handling is incorporated it is
expected that the robustness to errors will improve sigamifiky.

5.1 Conclusions

This report has outlined a new framework called the Hidddarimation State (HIS) model for design-
ing and implementing spoken dialog systems. The model ischas the SDS-POMDP but it avoids the
usual computational issues associated with POMDPs bytipaitig the space of user goals into a small
number of equivalence classes. Probabilistic context-fretology rules are used to describe the iterative
splitting of partitions to eventually form unique goal st By computing beliefs on partitions rather than
the underlying states, belief monitoring remains tractadblen for complex real-world systems. POMDP
policy optimisation and response generation uses the Sayrir@MDP model developed earlier for sim-
ple slot-based systems. The system has been evaluated @firipary trial with encouraging results.
A number of problems which arose during the trial have nownlfeeed, and the system performance is
further improved.

Overall the prototype HIS system implemented in the TALKjEgbis believed to be the first-ever full-
scale POMDP-based dialogue system. We believe that itsepte a major step forwards in designing
dialogue systems which are inherently robust, which canrally handle uncertainty in recognition output
and which can be trained and adapted automatically on relgldata.
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