
D4.4: POMDP-based System

Steve Young, Jost Schatzmann, Blaise Thomson,
Karl Weilhammer, Hui Ye

Distribution: Public

TALK
Talk and Look: Tools for Ambient Linguistic Knowledge

IST-507802 Deliverable 4.4

6th December, 2006

Project funded by the European Community
under the Sixth Framework Programme for
Research and Technological Development

The deliverable identification sheet is to be found on the reverse of this page.

Project ref. no. IST-507802
Project acronym TALK
Project full title Talk and Look: Tools for Ambient Linguistic Knowledge
Instrument STREP
Thematic Priority Information Society Technologies
Start date / duration 01 January 2004 / 36 Months

Security Public
Contractual date of delivery M36 = December 2006
Actual date of delivery 6th December, 2006
Deliverable number 4.4
Deliverable title D4.4: POMDP-based System
Type Report and Prototype
Status & version Final 1.0
Number of pages 34 (excluding front matter)
Contributing WP 4
WP/Task responsible UCAM

Other contributors Oliver Lemon, Jamie Henderson, Roi Georgila
Author(s) Steve Young, Jost Schatzmann, Blaise Thomson, Karl Weil-

hammer, Hui Ye
EC Project Officer Evangelia Markidou
Keywords statistical dialogue modelling; partially observable Markov

decision processes (POMDPs)

The partners in TALK are: Saarland University USAAR

University of Edinburgh HCRC UEDIN

University of Gothenburg UGOT

University of Cambridge UCAM

University of Seville USE

Deutches Forschungszentrum fur K̈unstliche Intelligenz DFKI

Linguamatics LING

BMW Forschung und Technik GmbH BMW

Robert Bosch GmbH BOSCH

For copies of reports, updates on project activities and other TALK-related information, contact:

TheTALK Project Co-ordinator
Prof. Manfred Pinkal
Computerlinguistik
Fachrichtung 4.7 Allgemeine Linguistik
Postfach 15 11 50
66041 Saarbrücken, Germany
pinkal@coli.uni-sb.de
Phone +49 (681) 302-4343 - Fax +49 (681) 302-4351

Copies of reports and other material can also be accessed viathe project’s administration homepage,
http://www.talk-project.org

c©2006, The Individual Authors.

No part of this document may be reproduced or transmitted in any form, or by any means, electronic
or mechanical, including photocopy, recording, or any information storage and retrieval system, without
permission from the copyright owner.

Contents

Executive Summary 1

1 Introduction 2
1.1 Report structure 4

2 The SDS-POMDP 5
2.1 POMDP Basics 5

2.2 The SDS-POMDP: a factored POMDP for spoken dialog systems 6

2.3 POMDP Policy Optimisation and Summary Space 7

3 The Hidden Information State dialog model 11
3.1 User action model 11

3.2 User goal component 11

3.3 Belief updating 12

4 Implementation of the HIS Model 15
4.1 Overview of HIS Model Operation 15

4.2 User Goal Trees and Ontology Rules 18

4.3 Dialog Acts 20

4.4 Partitions and Partition Splitting 23

4.5 Hypotheses and the Dialog History State 26

4.6 Action Generation 28

4.7 POMDP Training 29

5 Evaluation and Conclusions 31
5.1 Conclusions 32

i

IST-507802 TALK D:4.4 6th December, 2006 Page 1/34

Executive summary

Partially observable Markov decision processes (POMDPs) provide a principled mathematical framework
for modelling the uncertainty inherent in spoken dialogue systems. However, conventional POMDPs scale
poorly with the size of state and observation space. This report describes a variation of the classic POMDP
called the Hidden Information State (HIS) model. The HIS system is based on two key ideas.

Firstly, a belief distribution over an extremely large state space can be represented efficiently by grouping
states together into partitions. Initially, all states aredeemed to be in a single partition with belief unity.
As the dialog progresses, the partitions are split and belief is redistributed amongst the splits. Eventually,
some partitions become very low in cardinality, and in the limit singletons. Action selection is then domi-
nated by these low cardinality partitions. The overall result is that full-scale POMDP belief monitoring is
achieved without ever explicitly calculating the beliefs of (the majority of) irrelevant states. Furthermore,
partitions are represented efficiently using tree structures and these tree structures also provide a very
natural representation for real-world knowledge.

Secondly, although accurate belief monitoring must consider the full state space, adequate planning can
be achieved in a more compact “summary space”. The HIS model provides a mechanism for mapping
between these two spaces and therefore allows POMDP-based policy optimisation and action selection to
be made tractable by performing it in in the reduced summary space.

This report describes the HIS model and the way that it is usedto build the prototype POMDP-based
system. This work is an extension of the Bayes-net based system presented in D4.3 [1], some of the
technical details presented in this report are therefore common to the earlier report but are repeated here
in order to make this report self-contained.

The outcome of this work is a prototype system for the in-car tourist information domain which we believe
is the first ever full-scale implementation of a dialogue manager using partially-observable Markov De-
cision Processes. The key benefits of the POMDP formulation which are demonstrated by this prototype
system are

• fully-data driven dialog policy learning using a user simulator

• explicit representation of uncertainty by maintaining a large number of dialogue hypotheses in
parallel

• ability to handle N-best output hypotheses from the recogniser/semantic decoder

• ability to recover from errors without scripted repair dialogues

• seamless integration with the recogniser providing barge-in, response timeouts and automatic filler
(“um”, “er”, etc) detection

In a preliminary evaluation held in November consisting of 160 dialogues from 40 different speakers, the
system demonstrated acceptable performance across a rangeof word error rates and user styles. Following,
refinements made in the light of that evaluation, the system has been further improved and it is now judged
to provide state-of-the-art performance. Furthermore, this is only a first prototype and there are many
additional improvements that could be made including refinement of the probability models and finding a
better summary state representation.

Most importantly of all, this prototype of the HIS system demonstrates that the POMDP framework is
tractable and it can support real-world applications. Thisoffers the genuine opportunity to develop a
new class of dialogue system which can significantly out-perform the current generation of hand-crafted
systems.

Version: 1.0 (Final) Distribution: Public

Chapter 1

Introduction

The structure of a conventional dialogue system is shown in Fig. 1.1 both in terms of a block diagram
showing the data flow, and an influence diagram showing the dependencies from one time slot (i.e. turn)
to the next.

Speech

Understanding

Dialog

Model

Dialog

Manager

Speech

Generation

User

A
u

~

A
m

S
m

A
u

Y
u

Y
m

A
m

~

<
S
 u
,
S
d
>

S
m

A
u

A
m

hard-

coded

~

S
m

A
u

A
m

~

deterministic

time t
 time t+1

Figure 1.1: A traditional Spoken Dialogue System along withits corresponding influence dia-
gram

The processing involved in a single dialogue turn proceeds as follows. A dialogue manager generates a
prompt to the user in the form of a machine dialogue actAm. This is converted to an acoustic signalYm

and subsequently interpreted by the user asÃm. The user has a state which encodes both a goal to achieve
Su and the dialogue historySd. On receiving,Ãm the user updates this state and generates a user dialogue
act Au. This is converted to an acoustic signalYu and interpreted by the system’s speech understanding
component to givẽAu. The dialogue system maintains its own view of the world in state variableSm. The
estimateÃu is used to update this estimate of the machine’s state and based on this updated estimate, the
dialogue manager generates a new machine dialogue actAm.

Although greatly simplified, this description of the dialogue turn cycle applies to nearly all existing sys-
tems. In particular, the information state update approach(ISU) to dialogue system design can be viewed
as a direct implementation of this model [2].

2

IST-507802 TALK D:4.4 6th December, 2006 Page 3/34

However, although it is simple and intuitive, this traditional deterministic dialogue model has a number of
severe weaknesses. Firstly, and crucially, in real systems, the estimate of the user’s dialogue actÃu will be
extremely noisy. Hence, the system stateSm must be updated based on a “best guess” ofAu and since this
best guess will often be wrong, the system state can be easilycorrupted by erroneous information. This
will typically lead to misunderstanding and confusion, requiring a perhaps lengthy recovery dialogue to
repair it. The incidence of this problem can be reduced by making use of a confidence measure output by
the speech understanding component. This measure providesan estimate ofP(Ãu|Yu) which is typically
compared with a threshold and based on the result eitherÃu is accepted as true, or it is queried with the
user. Unfortunately, however, confidence measures themselves are unreliable, and there is no clear basis
for setting the threshold.

A second problem with the traditional architecture is that speech understanding errors are not the only
source of uncertainty: the user’s goals and intentions are uncertain and can change over time. Thus, a
model of the user’s goals and intentions must be integrated into the overall dialogue management process.

A final problem with the traditional architecture is the determinism itself. In order to implement optimal
dialogue strategies, a system must predict the future in order to plan for differing eventualities. Since
exact prediction is not possible, such plans can only be probabilistic and, as with the use of confidence
thresholds, these can only be used in a very crude way by a deterministic decision process. Also, of course,
it is very hard to adapt deterministic systems from trainingdata, and in practice, adaptation is limited to
manual system tuning following an off-line analysis of system logs. This process is labour intensive and
cannot be extended to automatic on-line adaptation.

As has been argued previously, taking a statistical approach to spoken dialogue system design provides the
opportunity for solving many of the above problems in a flexible and principled way [3, 4]. Early attempts
at using a statistical approach modelled the dialogue system as a Markov decision process (MDP) [5], and
this approach was also explored in the TALK project [4, 6, 7].MDPs provide a good statistical framework
since they allow forward planning and hence dialogue policyoptimisation through reinforcement learning.
However, they suffer from a number of problems. Firstly, andcrucially, MDPs assume that the machine
state is observable. Hence, they cannot account for either the uncertainty in the user state (Su andSd in
Fig. 1.1), or the uncertainty in the decoded user’s dialogueact (Ãu in Fig. 1.1). Secondly, and perhaps
less obviously, the MDP approach provides a poor interface for integrating heuristics. The main problem
is that heuristics typically involve making hard decisionsbased on the assumed system state. However,
in the case of an MDP, the assumed system state might be incorrect. To deal with this, the state must be
expanded to include confidence measures so that the heuristics can deal explicitly with the uncertainty.
However, this rapidly leads to an excessively large state space and complex heuristics.

A more general alternative to the fully observable MDP is thePartially Observable MDP (POMDP) [8].
A dialogue system based on a POMDP maintains a distribution over all possible states. This distribution
is called thebelief stateand dialogue policies are based on this belief state rather than the true underlying
state. The key advantage of the POMDP formalism is that it provides a complete and principled framework
for modelling the main sources of uncertainty. Furthermore, when cast as a so-called Spoken Dialogue
System POMDP (SDS-POMDP) [9, 10], the framework also allowsheuristics to be incorporated in a
very simple way since the principal components on which the heuristics depend (e.g.Su andAu) are by
definition assumed to be true. In computational terms, this means that in an MDP heuristics are executed
once per turn but have to be programmed to explicitly take account of uncertainty. In a POMDP, heuristics
are much simpler to program because the state is assumed correct. They do however have to be executed
many times per turn, once for each possible state value.

The use of POMDPs for any practical system is, however, far from straightforward. Since a belief distri-

Version: 1.0 (Final) Distribution: Public

IST-507802 TALK D:4.4 6th December, 2006 Page 4/34

butionb of a discrete stateSof cardinalityn+1 lies in real-valuedn-dimensional simplex, a POMDP can
be thought of as an MDP with a continuous state spaceb∈ ℜn. Thus, assuming that the POMDP machine
has a finite set of actions to select from, a POMDP policy is a mapping from partitions in n-dimensional
belief space to actions. Not surprisingly these are extremely difficult to construct and whilst exact solution
algorithms such as the Witness algorithm [11] do exist, theyrarely scale to problems with more than a
few states/actions. Fortunately, there are a number of waysof finding approximate solutions which are
sufficiently accurate to yield useful results. Firstly, thevery large “master state space” required to model
real-world systems can be mapped into a more compact “summary state space” which although small is
sufficiently detailed to allow effective planning[12]. Secondly, approximate solutions such as grid-based
methods[13] and point-based value iteration[14] can be used to solve problems with several hundreds of
state/actions, and although this is still insufficient for planning in master space, it is adequate for planning
in summary space.

Whatever approach is taken to the construction of policies,there is an other fundamental barrier to using
POMDPs in spoken dialogue systems. Real systems deal with real-world knowledge which is complex, hi-
erachical, and multi-valued. The potential state-space ofeven a simple travel booking system is enormous.
Furthermore, dialogue acts cannot easily be enumerated as asimple finite set. The types of act (request,
inform, etc) are easily enumerated, but the arguments to such acts (names of places, prices, dates, etc) are
not so simple. Whereas research into MDPs was able to side-step this problem on the grounds that only a
few global indicators needed to be modelled[15, 16], a central claim of the POMDP approach is that it is
truly holistic and, in particular, propositional content should not be ignored. Thus, whilst POMDPs pro-
vide a theoretical framework for modelling complete dialogue systems, what is also needed in practice is
a framework which can integrate the applicable knowledge representations with the appropriate statistical
models.

This report describes the development of the Hidden Information State (HIS) dialogue manager which
can support POMDPs with very large hierarchical state spaces. The key idea of the HIS system is that
a belief distribution over an extremely large state space can be represented efficiently by grouping states
together into partitions[17, 18, 19, 20]. Initially, all states are deemed to be in a single partition with
belief unity. As the dialogue progresses, the partitions are split and belief is redistributed amongst the
splits. Eventually, some partitions become very low in cardinality, and in the limit singletons. Action
selection is then dominated by these low cardinality partitions. The overall result is that full-scale POMDP
belief maintenance is achieved without ever explicitly calculating the beliefs of (the majority of) irrelevant
states. Furthermore, partitions are represented efficiently using tree structures and these tree structures also
provide a very natural representation for real-world knowledge.

1.1 Report structure

The remainder of this report is structured as follows. Chapter 2 briefly reviews the general framework of
the Spoken Dialogue System POMDP (SDS-POMDP) and chapter 3 explains how the HIS system fits into
this framework. Chapter 4 then describes the implementation of the HIS system in some detail. Chapter 5
presents experimental results from a user trial held in November 2006 and also discusses future work and
conclusions.

Version: 1.0 (Final) Distribution: Public

Chapter 2

The SDS-POMDP

The aim of this chapter is to review the basic POMDP equationsand then present a factored form called
the SDS-POMDP which is suitable for spoken dialogue systems[9, 10]. This lays the foundation for
describing the HIS model in the following chapter.

2.1 POMDP Basics

Formally, a POMDP is defined as a tuple{S,Am,T,R,O,Z,λ,b0} whereS is a set of states;Am is a set of
actions that the machine may take;T defines a transition probabilityP(s′|s,am); R defines the expected
(immediate, real-valued) rewardr(s,am); O is a set of observations;Z defines an observation probability
P(o′|s′,am); λ is a geometric discount factor 0≤ λ ≤ 1; andb0 is an initial belief stateb0(s).

The POMDP operates as follows. At each time-step, the machine is in some unobserved states∈ S.
Sinces is not known exactly, a distribution over states is maintained called a ”belief state,”b, with initial
belief stateb0. Thus, the probability of being in states given belief stateb is b(s). Based on the current
belief stateb, the machine selects an actionam ∈ Am, receives a rewardr(s,am), and transitions to a new
(unobserved) states′, wheres′ depends only onsandam. The machine then receives an observationo′ ∈O
which is dependent ons′ andam. The belief distribution is then updated based ono′ andam.

The belief update equations are easily derived using Bayes rule:

b′(s′) = P(s′|o′,am,b)

=
P(o′|s′,am,b)P(s′|am,b)

P(o′|am,b)

=
P(o′|s′,am,b)∑s∈SP(s′|am,b,s)P(s|am,b)

P(o′|am,b)

=
P(o′|s′,am)∑s∈SP(s′|am,s)b(s)

P(o′|am,b)

= k ·P(o′|s′,am)∑
s∈S

P(s′|am,s)b(s) (2.1)

wherek is a normalising constant. In equation 2.1, the summation uses the transition probability to
predict each next states′ as an expectation wrt to the belief state over preceding states. The observation

5

IST-507802 TALK D:4.4 6th December, 2006 Page 6/34

term before the summation weights the prediction for each new states′ based on the likelihood that the
most recent observationo′ could have been generated froms′.

Note that the action taken by the machine at each time step depends on the complete distributionb. This
is often initially a flat distribution reflecting ignorance.At each time-step, the belief state distribution b
is updated based on the new observation, and typically this will result in the distribution “sharpening”
around specific states.

At each time stept, the machine receives a rewardR(bt ,am,t) based on the current belief statebt and the
selected actionam,t . The cumulative, infinite horizon, discounted reward is called thereturnand it is given
by:

R =
∞

∑
t=0

λtR(bt ,am,t) (2.2)

=
∞

∑
t=0

λt ∑
s∈S

bt(s)r(s,am,t). (2.3)

Each actionam,t is determined by a policyπ(bt) and it is the goal of the machine to find the policyπ∗ which
maximises the return. Such a policy is called an optimal policy. Since belief space is a real-valued simplex,
the policy can be viewed as a partitioning of belief space into regions, where each region corresponds to
the single unique action which should be taken if the currentbelief state lies in that region.

Finding the optimal policy involves using the transition matrix to predict the reward expected from each
state for each possible machine action. This is very similarto the forward-backward algorithm of E-M
and for regular fully observed Markov Decision Processes, it is essentially a dynamic programming search
over a discrete state space. POMDPs solutions are much more complex, however, because the state space
is effectively continuous. As mentioned in the introduction, exact solution algorithms do exist (e.g. see
the Witness Algorithm [11, 8]) but they can only handle very small problems. Fortunately, approximate
solutions can handle significantly larger problems (e.g. Perseus [14]).

For cases where the model is unknown or there is insufficient data to estimate accurately, on-line learning
techniques analogous to Q-learning are also possible. For example, active learning can be used to si-
multaneously update an approximate model whilst optimising the return[21]. In the work described here,
however, a simple grid-based batch-mode Monte Carlo learning scheme is used (see section 4.7)[22].

2.2 The SDS-POMDP: a factored POMDP for spoken dialog
systems

Referring back to Fig. 1.1, it can be seen that the state spacerepresented by the dialog modelSm must entail
the user goal and dialog state and since these cannot be observed, Sm must correspond to a distribution
over those states. In addition, since the last user act is also uncertain, it is convenient to include it also
within the unobserved state space. This suggests that the state space of a POMDP for dialog systems
should be factored as follows[9]. First, the unobserved state is factored into 3 components:

s = (su,au,sd). (2.4)

The system stateSm then becomes the belief stateb oversu, au andsd, i.e.

sm = b(su,au,sd). (2.5)

Version: 1.0 (Final) Distribution: Public

IST-507802 TALK D:4.4 6th December, 2006 Page 7/34

The observationo is the estimate of the user dialog act ˜au. In the general case this will be an N-best list of
hypothesised user acts, each with an associated probability, i.e.

o = [(ã1
u, p1),(ã

2
u, p2), . . . ,(ã

N
u , pN)] (2.6)

such that

P(ãn
u|o) = pn, n = 1. . .N (2.7)

The transition function for an SDS-POMDP follows directly by substituting equation 2.4 into the regular
POMDP transition function and making some reasonable independence assumptions, i.e.

P(s′|s,am) = P(s′u,a
′
u,s

′
d|su,au,sd,am)

= P(s′u|su,am)P(a′u|s′u,am)P(s′d|s′u,a′u,sd,am) (2.8)

Making similar reasonable independence assumptions regarding the observation function gives,

P(o′|s′,am) = P(o′|s′u,a′u,s′d,am)

= P(o′|a′u) (2.9)

This is theobservation model.

The above factoring simplifies the belief update equation since substituting equation 2.8 and equation 2.9
into equation 2.1 gives

b′(s′u,a
′
u,s

′
d) = (2.10)

k ·P(o′|a′u) ∑
su,au,sd

P(s′u|su,am)P(a′u|s′u,am)P(s′d|s′u,a′u,sd,am)b(su,au,sd)

= k ·P(o′|a′u)P(a′u|s′u,am)∑
su

P(s′u|su,am)∑
sd

P(s′d|s′u,a′u,sd,am)∑
au

b(su,au,sd)

= k · P(o′|a′u)
︸ ︷︷ ︸

observation
model

P(a′u|s′u,am)
︸ ︷︷ ︸

user action
model

∑
su

P(s′u|su,am)
︸ ︷︷ ︸

user goal
model

∑
sd

P(s′d|s′u,a′u,sd,am)
︸ ︷︷ ︸

dialog
history
model

b(su,sd) (2.11)

As shown by the labelling to equation 2.11, the probability distribution for a′u is called theuser action
model. It allows the observation probability that is conditionedon a′u to be scaled by the probability that
the user would speaka′u given the goals′u and the last system promptam. Theuser goal modeldetermines
the probability of the user goal switching fromsu to s′u following the system promptam. Finally, the
dialog history modelrepresents the transition matrix for the dialog state component. This term allows
information relating to the dialog history to be maintainedsuch as grounding and focus.

2.3 POMDP Policy Optimisation and Summary Space

A POMDP policy of exactlyt steps can be described by at-step conditional planwhich is a branching
tree in which each node is associated with an action and each branch is labelled by an observation (see
Fig. 2.1). To execute such a policy, the machine would first take the action at the root node then on

Version: 1.0 (Final) Distribution: Public

IST-507802 TALK D:4.4 6th December, 2006 Page 8/34

o
1

o
2
 o
3

a
m,
t

o
1
 o
2
 o
3
 o
1
 o
2
 o
3
 o
1
 o
2
 o
3
 o
1
 o
2
 o
3

level 1

level
t

level 2

level
t
-1
 a
m,
t
-1

a
m,1

Figure 2.1: A t-Step Conditional Plan (for a problem with 3 possible observations)

receiving the subsequent observation, it would follow the corresponding branch and execute the action at
the daughter node. This would be repeated until a leaf node was reachedt −1 steps later. Let each node
be labelled with its level and the observation that leads to it, where the level at the root node ist and at the
leaf nodes is 1. Then if the current state issm, the expected reward for a given conditional plan is given by
its value functionwhich can be computed recursively forτ = 1. . . t by

Vτ(sm) =

{
r(sm,am,τ), if τ = 1
r(sm,am,τ)+ λ∑s′m P(s′m|sm,am,τ)∑o′ P(o′|s′m,am,τ)Vo′

τ−1, otherwise
(2.12)

In practice, the current state is not known, however, the expected value for belief stateb is just

V(b) = ∑
s

b(s)V(s) (2.13)

Thus, the expected value function associated with a given conditional plan is a hyperplane in belief space.

If all possible t-step conditional plans are enumerated to form the setNt , the value of the best plan at belief
stateb is just

V∗
Nt

(b) = max
n∈Nt

∑
s

b(s)Vn(s) (2.14)

This is the optimal value function and the action associatedwith the root node of the member inNt which
maximisesV∗

Nt
(b) belongs to the optimal policy. Since the value function of each plan is just a hyperplane

in belief space, the piece-wise linear convex surface formed from the upper surface of the full set of plans
defines the optimal value function. This is illustrated graphically in Fig. 2.2 which shows the hyperplanes
for 5 different plans in a simple binary state space. The optimal value function is the upper dotted surface.
Whens= sa at the left side of belief space, the optimal value function belongs to plan 1. Whens= sb

at the far right side of belief space, the optimal value function belongs to plan 5. In the middle of belief

Version: 1.0 (Final) Distribution: Public

IST-507802 TALK D:4.4 6th December, 2006 Page 9/34

V
*
(b)
V
1

V
2

V
3

V
4

V
5

b

V(b)

s=
s
 a
 s=
s
 b

Figure 2.2: Value Function Hyperplanes

space, plan 3 is optimal. Note that plans 2 and 4 do not contribute to the optimal solution and can be
discarded.

In summary, an optimal policy for a POMDP is found by generating all plans at step 1 and computing their
value functions. Then all plans at step 2 are generated by taking all combinations of the plans at step 1
extended by 1 step, and computing their value functions using (2.12). Any plans which do not contribute to
the optimal 2-step solution must be pruned to limit the combinatorial explosion in the number of possible
plans. The process is then repeated fort = 2,3, until |V∗

t (b)−V∗
t−1(b)| is sufficiently small for allb.

The above exact POMDP solution algorithm is in practice intractable since even the most efficient algo-
rithms (see eg [11]) can only cope with a few (i.e. less than 10) states/actions/observations. Hence, in
practice, approximate algorithms must be used to find good solutions for real-world problems such as
spoken dialogue.

The full state-space of the SDS-POMDP is very large indeed, and the generation of (approximately)
optimal policies requires two steps. Firstly, the full state-space, referred to as themaster space, must be
mapped into a simplersummary space. Secondly, the exact POMDP solution approach described above
must be simplified by discretising belief space. The former reduces the state space to a few hundred states,
and the latter makes this size of state space tractable.

Summary space mapping is relatively straightforward. The basic idea is that at each turn, immediately after
updating beliefs, the set of master statesS is mapped into a much reduced set of summary statesS̃where
S̃consists of the topN states inSu with the highest belief, plus abstracted versions ofSd andAu. SinceN
is typically just 1 or 2, the resulting state space is very compact. The mapping from master to summary
space is made invertable by ensuring that actions in summaryspace implicitly refer to the currently most
likely, or next-most likely user goal. Thus, for example, aconfirm act in summary space for which
the top goal was currently “venue(hotel,location=central)” would map back into “confirm(type=hotel,

Version: 1.0 (Final) Distribution: Public

IST-507802 TALK D:4.4 6th December, 2006 Page 10/34

location=central)” in master space. Similarly, if the nextto top goal was “venue(bar,location=central”, the
summary space action “select” would map into “select(venue=hotel,venue=bar)” in master space.

The mapping to summary space brings the SDS-POMDP within reach of practical solutions algorithms.
These typically discretise belief space by selecting a set of belief points which will cover (i.e. lie close to)
all of the belief states that the system is likely to encounter. This set is usually constructed by running the
system in some form of simulation mode. Either by sampling from its own distributions, or by running it
with an external user simulator.

In the simplest grid-based methods, a set of distinct beliefpoints are created and value functions estimated
at just those points. This essentially reduces the problem to a classic MDP optimisation problem and all
of the solutions developed for MDPs apply. A slightly more elaborate scheme called point-based value
iteration (PBVI) discretises belief space, but then calculates a value hyperplane for each belief point[14].
For many problems, PBVI appears to be one of the most efficientalgorithms known. However, in all
grid-based methods there is a trade-off between the complexity of the value estimation and the number of
points. In spoken dialogue applications, even summary spaces are quite large and, in practice, it appears
that simple grid-based schemes often perform better than PBVI [23].

The current version of the HIS dialog manager uses a simple grid-based batch mode Monte Carlo rein-
forcement learning scheme, which relies on an external usersimulator to drive the system through a large
number of learning cycles. It is described further below.

Version: 1.0 (Final) Distribution: Public

Chapter 3

The Hidden Information State dialog
model

Having reviewed the general form of the SDS-POMDP in the previous chapter, this chapter derives a
specific form of SDS-POMDP called the Hidden Information State model.

Although the factoring introduced in the last chapter is helpful, the size of the state spaces needed to rep-
resent real-world dialog systems would quickly render a direct SDS-POMDP implementation intractable.
The dialog history component is computed heuristically andas will be explained later, this results in a
relatively small set of dialog states being tracked from turn to turn. However, the user goal and action
state components require reasonably accurate distributions to be maintained and this is not easy since the
size of the user goal space is enormous and the set of user actions cannot even be enumerated. The HIS
model deals with these two components in different ways.

3.1 User action model

Consider first the user action model. As shown by equation 2.11 of the previous chapter, the user action
component of the state space is memoryless, i.e. the value ofthe previous user actionau is not required
to apply the belief update equation. This means that the distribution for a′u can be approximated by
considering just those user action values which are deemed to have non-zero probabilities in the current
turn. These will be precisely those actions which appear in the N-best list of hypotheses from the speech
understanding component. To guard against the case of very poor recognition resulting in the correct
value ofa′u being dropped from the observation altogether, anull action is always included with a floor
probability representing all of the user acts not in the N-best list.1

3.2 User goal component

To deal with the user goal component, it is necessary to be a little more specific about what is meant by a
user goal. The initial target of the HIS model is database inquiry applications such as traffic information,

1Note that in the context of a POMDP-based spoken dialog system, the termsuser actand user actionare
synonymous.

11

IST-507802 TALK D:4.4 6th December, 2006 Page 12/34

tourist information, flight booking, etc. In this context, auser goal is deemed to be a specific entity that
the user has in mind. For example, in a tourist information system, the user might be wishing to find
a moderately priced restaurant near to the theatre. The userwould interact with the system, effectively
refining his or her query until an appropriate establishmentwas found. If the user wished to find an
alternative restaurant, or even something different entirely such as the nearest tube station to the restaurant,
this would constitute a new goal. In the HIS system, the duration of a dialog is defined as being the
interaction needed to satisfy a single goal. Hence by definition, the user goal model simplifies trivially to
a delta function, i.e.

P(s′u|su) = δ(s′u,su). (3.1)

Substituting equation 3.1 into equation 2.11 gives

b′(s′u,a
′
u,s

′
d) = k ·P(o′|a′u)P(a′u|s′u,am)∑

sd

P(s′d|s′u,a′u,sd,am)b(s′u,sd) (3.2)

To further simplify belief updating, it will be assumed thatat any timet, Su can be divided into a number
of equivalence classes where the members of each class are tied together and are indistinguishable. These
equivalence classes will be calledpartitions of user goal space. Initially, all statessu ∈ Su are in a single
partition p0. As the dialog progresses, this root partition is repeatedly split into smaller partitions. This
splitting is binary

p→{p′, p− p′} with probability P(p′|p). (3.3)

Since multiple splits can occur at each time step, this binary split assumption places no restriction on the
possible refinement of partitions from one turn to the next.

Given that user goal space is partitioned in this way, beliefs can be computed based on partitions ofSu

rather than on the individual states ofSu. Initially the belief state is just

b0(p0) = 1. (3.4)

Whenever a partitionp is split, its belief mass is reallocated according to equation 3.3, i.e.

b(p′) = P(p′|p)b(p) and b(p− p′) = (1−P(p′|p))b(p) (3.5)

Note that this splitting of the belief mass is simply a reallocation of existing mass, it is not a belief update.
It will be referred to asbelief refinement.

3.3 Belief updating

The belief update equation for a partitioned state space is easily derived from the non-partitioned case.
Let partitionp′ consist of states{s′u|s′u ∈ p′}, then summing both sides of equation 3.2 over all{s′u} gives,

b′(p′,a′u,s
′
d) = k ·P(o′|a′u) ∑

s′u∈p′
P(a′u|s′u,am)∑

sd

P(s′d|s′u,a′u,sd,am)b(s′u,sd) (3.6)

As a dialog progresses, the user goal partitions are split repeatedly to ensure that everything which has
been mentioned so far in the dialog is explicitly represented in the partitions. This being so, it is reasonable
to assume that

P(a′u|s′u,am) = P(a′u|p′,am) (3.7)

Version: 1.0 (Final) Distribution: Public

IST-507802 TALK D:4.4 6th December, 2006 Page 13/34

O

P

S
d

A
u

O

P

S
d

A
u

A
m

O

P

S
d

A
u

O

P

A
m

N
-Best list

of A
u

S
d

A
u

A
m

refine event space

split

Figure 3.1: Influence diagram for the Hidden Information State dialog model

and

P(s′d|s′u,a′u,sd,am) = P(s′d|p′,a′u,sd,am) (3.8)

Hence, using these simplifying assumptions and equation 3.5, equation 3.6 becomes

b′(p′,a′u,s
′
d) = k ·P(o′|a′u)P(a′u|p′,am)∑

sd

P(s′d|p′,a′u,sd,am) ∑
s′u∈p′

b(s′u,sd)

= k ·P(o′|a′u)P(a′u|p′,am)∑
sd

P(s′d|p′,a′u,sd,am)b(p′,sd)

= k · P(o′|a′u)
︸ ︷︷ ︸

observation
model

P(a′u|p′,am)
︸ ︷︷ ︸

user act
model

∑
sd

P(s′d|p′,a′u,sd,am)
︸ ︷︷ ︸

dialog
history
model

P(p′|p)b(p,sd)
︸ ︷︷ ︸

belief
refinement

(3.9)

wherep is the parent ofp′. Equation 3.9 is the belief update equation for the HIS model, it is shown in
the form of an influence diagram in Fig. 3.1. Note that in this diagram the dotted arrows represent the
influence ofam andau on therefinementof p′ but not on its update i.e. they influence the splitting ofp′

but not its conditional probability.

As shown by the labelling on equation 3.9, the HIS update equation depends on four probability distribu-
tions:

1. Observation Model- this is approximated by the N-best probability from the speech understanding
component

P(o′|a′u) ≈ k′ ·P(a′u|o) (3.10)

Version: 1.0 (Final) Distribution: Public

IST-507802 TALK D:4.4 6th December, 2006 Page 14/34

2. User Action Model- this is composed of two parts: the bigram probability of thecurrent user act
type given the preceding system act type, and a probability denoting the degree to which the current
user act is consistent with the given partitionp′. Thus,

P(a′u|p′,am) ≈ P(T (a′u)|T (am))P(M (a′u)|p′) (3.11)

whereT (a) denotes thetypeof the dialog acta, for example, the type of the act “inform(food=Indian)”
is inform. There are a total of 12 different dialog act types supportedby the HIS model and these are
described in detail section 4.3.M (a) denotes whether or not the dialog acta matchesthe current
partition p′. The first component can be estimated from a dialog corpus, the second component is
set to 1 if the act matches and zero otherwise.

3. Dialog History Model- this is entirely heuristic.

P(s′d|p′,a′u,sd,am) = 1 iff s′d is consistent withp′,a′u,sd,am (3.12)

= 0 otherwise (3.13)

The way that this is computed in the HIS model is described in section 4.

4. Belief Refinement- this depends on the ontology rules used to define the application domain. User
goals are built using probabilistic context free rules, with rule probabilities seta priori. If the
sequence of rulesr1, r2, . . . , rk is used to split partitionp into sub-partitionp′, the belief refinement
probability is

P(p′|p) =
k

∏
i=1

P(r i) (3.14)

whereP(r) is the prior probability of ruler. This process is described in more detail in section 4.2.

Having described the mathematical basis of the HIS model, the remainder of this report describes its
specific implementation.

Version: 1.0 (Final) Distribution: Public

Chapter 4

Implementation of the HIS Model

This chapter describes a specific implementation of the HIS model. It begins with a high level overview
of how the model operates. It then describes each of the main components in more detail.

4.1 Overview of HIS Model Operation

Before describing the details of the HIS system, it will be helpful to give a brief overview of the principal
data structures and the overall operation. As shown in Fig. 4.1, the inputs to the system consist of an
observation from the user and the previous system act. The observation from the user typically consists of
an N-best list of user acts, each tagged with their relative probability. The user goal is represented by a set
of branching tree structures each of which initially consist of just a single node. These tree structures can
be grown downwards by applying ontology rules which describe the application domain. For example,
there might be a rule which states that avenue can be either ahotel, a restaurant or abar. In each
case, the derived venues will have further nodes describingfeatures of that type of venue. Ambiguity is
represented by allowing nodes to expand into multiple alternatives. Each distinct tree forms a partition
of user goal space as described in section 3. The initial single tree node represents a single partition with
belief unity. As the trees are grown, the partitions are repeatedly split allowing the belief assignment to
be refined. Eventually, the hope is that a single complete tree will be formed which represents the actual
user’s goal and that this tree has a high belief.

The tree growing process is driven entirely by the dialog acts exchanged between the system and the
user. Every turn, the previous system act and each input useract is matched against every partition in
the branching tree structure. If a match can be found then it is recorded. Otherwise the ontology rules
are scanned to see if the tree representing that partition can be extended to enable the act to match. For
example, if the act wasrequest(ensuite), and the partition represented the higher level nodevenue,
then the venue node would be extended to a hotel node with associated properties, one of which would be
ensuite. Therequest(ensuite) act would then match. Note however that an ontology rule can be used
to extend a specific node just once. This ensures that all partitions are unique and there are no duplicates.

Once the matching and partition splitting is complete, all the partitions are rescanned and where possible
each hypothesised input user act is attached to each partition. Similarly the system act is attached to each
partition (not shown in the figure). The combination of a partition and an input user act(p,au) forms a
partial hypothesis and the user act model probability is calculated as in equation 3.11.

15

IST-507802 TALK D:4.4 6th December, 2006 Page 16/34

1

Observation

From

User

Ontology Rules

2

N

u
a

m
a

~

From

System

1

1

2

2

2

1

d
s

2

d
s

1

d
s

2

d
s

3

d
s

1

u
p

2

u
p

3

u
p

POMDP

Policy

2
h

3
h

4
h

5
h

1
h

1

2

2

2

1
p

2
p

3
p

~
a
u

~
a
u

~
a
u

~
a
u

~
a
u

~
a
u

~
a
u

Belief

State

Application Database

Action

Refinement

(heuristic)

m
a
̂

Strategic

Action

Specific

Action

Map to

Summary

Space

m
a

b

b
^

Summary Space

Figure 4.1: Overview of the HIS System operation

As explained above, partitions are grown based entirely on dialog act inputs. If the user (or the system)
mentions a node such asensuite this will cause other nodes to be created. The grounding status of each
tree node is recorded in a dialog state data structure. Sincethe grounding status of a tree node can be
uncertain, any(p,au) pair can have multiple dialog states attached to it. However, unlike the user act
component of the state which is memoryless, the dialog componentsd evolves as the dialog progresses.
Thus, at the beginning of each dialog cycle, the various dialog state instances are attached directly to
the partitions. Once the input user acts have been attached to the partitions, the current dialog states are
extended to represent the new information in the dialog acts. At this point, the dialog state probabilities
given by equation 3.13 are computed. At the end of the turn, identical dialog states attached to the same
partition are merged ready for the next cycle.

Every triple(p,au,sd) represents a single dialog hypothesishk. The belief in eachhk is computed using
equation 3.9 and the complete set of valuesb(hk) represents the current estimate of the POMDP belief
state in master space. This belief state is then mapped to summary space and input to the POMDP policy
which yields a high level strategic summary space action. This strategic action defines the broad class of
response (e.g. request more info, clarify, confirm, etc) andwhich set of hypotheses it refers to (topmost,
top-two, rest). Given this strategic action and the information in the relevant partitions and dialog histories,
the action refinement heuristics map the summary space action back into master space where it generates
a specific system action.

A screen shot of the HIS system in operation is shown in Fig 4.2. The main central display shows the top
few hypotheses. Above this is the recogniser output and below are the semantic decoder inputs from the
previous turn (left) and the current turn (right). In the topright, is a text version of the speech output.

Version: 1.0 (Final) Distribution: Public

IST-507802 TALK D:4.4 6th December, 2006 Page 17/34

Figure 4.2: Screenshot of the Prototype HIS System

Version: 1.0 (Final) Distribution: Public

IST-507802 TALK D:4.4 6th December, 2006 Page 18/34

4.2 User Goal Trees and Ontology Rules

User goals are represented by a branching tree structure whose hierarchy reflects both the natural structure
of the data and a natural order in which to introduce the individual concepts into a conversation. User goal
trees are constructed from four types of tree node:

1. class nodes - these have non-terminal offspring. Conceptually a class node represents an instance
of a type, and the offspring of the node denote the members of that type.

2. lexical nodes - these have only terminal offspring i.e. atoms.

3. subclass nodes - these have no offspring. They act like a tag to the parent node indicating a par-
ticular flavour of that class. They are provided mainly for notational convenience, especially in the
way that database entitities are defined.

4. atomic nodes - these are the offspring of lexical nodes. They represent actual values such asHotel
Grand, Jazz, yes, 27, etc.

An example of a fully expanded user goal tree is shown in Fig. 4.3. This example is a simplified repre-
sentation of a restaurant. The top level node represents an arbitrary entity. It has a subclassvenue and
corresponding subclass memberstype, name, andlocation. These members are generic for any kind
of venue (e.g. restaurant, bar, hotel, etc). In this case, the type is a restaurant with restaurant-specific
class membersfood, music anddecor. The location is specified as a specific address and thereforehas
astreet member. It could have been specified by some other means such as nearto, gridref, etc, and
these would be alternate subclasses of location.

entity

venue
 type
 name

restaurant
 food
 music

location

Italian
 Toni's

address
 street

Main Street
Jazz

class
 subclass

lexical
 atom

Node Types

decor

Roman

Figure 4.3: Example Fully Expanded User Goal Tree

User goal trees are built using a set of rules which adhere to the syntax set out in Fig. 4.41. As an example,
the rules set out in Fig. 4.5 describe the restaurant goal described above. There are two basic forms of
rules: class definition rules and lexical definition rules. The basic function of these should be clear from
the table, however, some of the details require further explanation.

1Atomic names containing non-alphadigit characters must beenclosed in double quotes

Version: 1.0 (Final) Distribution: Public

IST-507802 TALK D:4.4 6th December, 2006 Page 19/34

ruleset = ruledef";" { ruledef ";" } {dbasefile}
ruledef = classdef | lexdef
classdef = classinst "->" [subclass] [classbody] [prob]
classbody = "(" [opt] member { "," [opt] member } ")"
lexdef = classinst "=" "(" atom[prob] {"|" atom[prob] ")"
prob = "{" float "}"
opt = "-" | "+"
classinst = name {"." name}
member = name
subclass = name
atom = name
dbasefile = "+" "filename"

Figure 4.4: Syntax of HIS Ontology Rules

Firstly, the members of a class can have an optional “+” or “-”specifier indicating that the node is primarily
selectionalor informational, respectively. These markers are optional and only influence the selection of
system responses. The plus specifier indicates that a value is normally required for that member in order
to identify the requested entity. Conversely, the minus specifier indicates that the member will rarely be
specified by the user to identify the entity but does contain information that the user may wish to know
about once the entity has been selected. In the example rules, the food type is marked with a “+” since it is
frequently specified by users in order to identify a suitablerestaurant, whereas thedecor is marked with
a “-” since it is rarely specified by users when searching for an appropriate restaurant. It might, however,
be required once a candidate restaurant has been located.

Secondly, note that in the left hand side of class definition rules, a simple name can be qualified using a
dotted path notation. This is provided as a convenience to allow generic labels such asname to be used in
different contexts, and then specific instances identified.In the example, the lexical definition forname is
qualified byvenue to distinguish it from other types of name.

Finally, all rules can have a probability assigned to them. Where no probability is given, then equal
probability is assumed. These probabilities represent prior knowledge. In the example, the venue type is
restaurant with probability 0.35. This would reflect the fact that in practice when users want to locate a
venue, 35% of the time they require a restaurant. As explained in section 4.4, these prior probabilities are
used to reallocate belief mass when a partition is split.

The ontology rules defined above describe the structure of the data. The data itself must be stored in a
second file in the form of entity definitions, where each entity consists of a list of attribute value pairs.
An example entity definition is shown in Fig. 4.6. Entity definitions must begin with anid attribute and
should normally includename andtype attributes. All remaining attribute-value pairs are arbitrary but
must be consistent with the rules. For example, all values must appear in at least one lexical definition2.

The HIS system attempts to interpret attribute value pairs in a flexible way. For example, given the location
rule in Fig. 4.5, an address could be specified by any of:addr("Main Street"), location("Main
Street") or street("Main Street"). Note, however, that if there was also a rule such as

2Numbers are dealt with as a special case

Version: 1.0 (Final) Distribution: Public

IST-507802 TALK D:4.4 6th December, 2006 Page 20/34

entity -> venue(type,name,location) {0.2};
type -> restaurant(+food,music,-decor) {0.35}
location -> addr(street) {0.8};
venue.name = ("Toni’s","Quick Bite",);
food = (Italian,Chinese,English, ...);
music = (Jazz,Pop,Folk, ...);
decor = (Traditional,Roman,ArtDeco,...
street = ("Main Street", "Market Square", ...);

Figure 4.5: Example of using Ontology Rules

id("R23")
name("Toni’s")
type("restaurant")
food("Italian")
addr("Main Street")
near("Cinema")
phone("2095252")
decor("Roman")

Figure 4.6: Example Database Entity Definition

location -> nearto(street);

then the latter two forms would be ambiguous.

4.3 Dialog Acts

As shown in Fig 4.7, a dialog act consists of a type and a list ofzero or morename=value pairs referred
to asitems. An item name refers to a node in a user goal tree, it can be a simple name or a qualified name
where the qualifier is either the name of the parent node or thename of the parent’s subclass, if any. There
may be zero or many items in a single act, and the interpretation depends on the act type of which there
are 15 in total.

The full set of acts supported by the HIS system is summarisedin Table 4.1. The meaning of each act

acttype
([
q
 .] a [= x] ,)

item

qualifier
 name
 value

Figure 4.7: Structure of a Dialog Act

Version: 1.0 (Final) Distribution: Public

IST-507802 TALK D:4.4 6th December, 2006 Page 21/34

should be clear from the table, but the following amplifies a number of important points.

Firstly, the HIS system does not support multiple dialog acts in a single turn. Thus, for example, if

U: inform(food=Italian)
U: inform(music=Jazz)

is input to the system, it is interpreted as

U: inform(food=Italian) {0.5}
U: inform(music=Jazz) {0.5}

i.e. the user said either that the food is Italianor that the music is Jazz with equal probability. To convey
both pieces of information in a single turn, aninform act with two items must be used, i.e.

U: inform(food=Italian, music=Jazz)

In some cases, items are treated differently depending on their position in the item list. For example,

S: confreq(type=restaurant,food)

is a request to confirm that the required type is restaurant and then request a value for food. If the response
was

U: affirm(type=restaurant, food=Italian)

this would confirm the type and provide the required food information. The sequence

S: confirm(type=restaurant)
U: affirm()

is identical to

S: confirm(type=restaurant)
U: affirm(type=restaurant)

If negate is used, however, the first item is taken to be a correction thus the response

U: negate(food=Russian)

would be interpreted as “No, I want Russian food”. To refute aspecific value,deny is used, for example

U: deny(food=Italian,food=Russian)

means “The food is not Italian, it is Russian”.

There is a special qualifiermore. This can be used only inside a user request act and a system hello() act,
for example,

U: request(more)

Version: 1.0 (Final) Distribution: Public

IST-507802 TALK D:4.4 6th December, 2006 Page 22/34

Act System User Description
hello()

√ √
start dialog

hello(more)
√ × prompt for more

bye()
√ √

end dialog
inform(a=x,b=y,...)

√ √
give information a=x, b=y, ...

inform(name=none)
√ √

inform user that no suitable entity found
request(a,b,...)

√ √
request values for a,b, ...

request(more) × √
request more information

request(more.a) × √
request more information about a

confirm(a=x,b=y,..)
√ × confirm a=x,b=y,..

confreq(a=x,..,c=z, d)
√ × confirm a=x,..,c=z and request value of d

select(a=x,b=y)
√ × select either a=x or b=y

affirm() × √
simple yes

affirm(a=x,b=y,...) × √
confirm and give further info a=x, b=y, ...

negate() × √
simple no

negate(a=x,b=y,...) × √
no, a=x and give further info b=y, ...

deny(a=x,b=y) × √
no, a!=x and give further info b=y, ...

repeat()
√ √

request to repeat last act
reqalts() × √

request alternative goal
reqalts(a=x,..) × √

request alt with new information
null()

√ √
null act - does nothing

xxx(a=dontcare) × √
in any info item a can be any value

Table 4.1: Supported Dialog Acts

means ”Tell me more about the current suggestion” and

U: request(more.hotel.name="The Grand")

means ”Tell me more about ”The Grand” hotel”. The system act

S: hello(more)

means ”Do you want anything more?”.

When an act is processed by the HIS system, its items are matched against the user goal tree. If a value is
given, then an item can only match if there is an atomic leaf node with the same value and its parent (or
the subclass of its parent) matches the name of thename=value pair. If no value is given then the name
must match a node in the tree. If the name is qualified, then thequalifier must match the parent (or the
subclass of the parent) of the matched node.

User dialog acts are presented to the system as lists of alternatives. Each alternative can have a probability
attached to it. All acts without probabilities are assumed equally likely and assigned probabilities so as to
make the total sum to one. Every input list must include a nulldialog act with a non-zero probability. If
no null act is included, the system inserts one.

Version: 1.0 (Final) Distribution: Public

IST-507802 TALK D:4.4 6th December, 2006 Page 23/34

4.4 Partitions and Partition Splitting

Section 4.2 explained how a single user goal is encoded in a branching tree structure. In fact, the HIS
system maintains a forest of partially and fully-expanded trees. Each partially expanded tree represents a
partition of equivalent user goal states. Each fully expanded tree is also a partition, but it is a singleton
partition i.e., it encodes a single user goal state.

This forest of trees is stored in such a way that no partition is duplicated, and the sum of the probability
of all partitions is always unity. As shown in Fig. 4.8(a), atsystem start up the user goal forest consists
of a single node calledtask. This single partitionp has beliefb(p) = 1 and it represents all possible user
goals. Since this node is built by default, all application rule sets must start with rules to expand this node.
Thus, in practice, the rule set shown in Fig. 4.5 must be augmented by a rule such as:

task -> find(entity) {0.3};

which expresses the prior knowledge that 30% of the time, a user will wish to find something (e.g. a hotel,
a restaurant etc). Fig. 4.8(b) shows what happens when this rule is applied. Thetask node is split into
two parallel nodes and the probability mass is divided in proportion to the prior probability of applying
the rule. The result is two partitions with beliefsb = 0.7 andb = 0.3 respectively. Suppose now that the
rule for entity in Fig. 4.5 is applied, partition 2 is split to form a new partition and the belief mass is
divided again. The result is as shown in Fig. 4.8(c). And so the process continues. The result in this case
is three partitions which can be described via their leaf nodes as

P1: task {0.70}
P2: find(entity){0.24}
P3: find(venue(type,name,location)){0.06}

where the belief in each partition is shown in braces and always sums to one. Note that these prior
beliefs give relatively high weight to unexpanded nodes because they represent the largest equivalence
sets. However, once belief updating occurs, this situationis quickly reversed since the evidence typically
supports only the more specific partitions.

The above explains how partitions are split but not when. In fact partition splitting is entirely on demand
and it is driven by the items in the input user and system dialog acts. Referring back to Fig. 4.1, the first
stage of the dialog cycle is to match the items of all of the input user acts and the previous system act
against all of the existing partitions. Note that the act type is not relevant here since the goal is simply
to expand the partitions sufficiently to match as many as possible of the input act items. Each item of
each act is taken in turn and applied against each existing partition. If the item matches the partition, then
the result is recorded and nothing further happens. If however the item does not match, then the ontology
rules are scanned and the system tests to see whether the current partition could be extended sufficiently to
allow the item to match. If it concludes that a match is possible, then the partition is extended and a match
is recorded. For example, if the user goal forest was as shownin Fig. 4.8(b) at the point when the item
(music=Jazz) was received, then the system would determine that a match could be achieved by first
expanding theentity node using the first rule in Fig. 4.5. This node is referred to as theexpansion node.
The newly created offspring of the expansion node includes atype node and this can be expanded using
the second rule in Fig. 4.5. Finally, expanding the lexical nodemusic to derive the atomic nodeJazz
would allow the required match. Having determined that it isindeed possible to construct amatching
subtreewhich if attached to the expansion node would support an itemmatch, then that matching subtree
is created.

Version: 1.0 (Final) Distribution: Public

IST-507802 TALK D:4.4 6th December, 2006 Page 24/34

entity

0.8

entity

0.2

venue
 type
 name
 location

task

0.7

task

0.3

P1

find

P2

P3

(
c
)

(b)

entity

task

0.7

task

0.3

P1

find

P2

(a)

task

1.0

P1
 b=1.0

b=0.7

b=0.3

b=0.24

b=0.7

b=0.06

Figure 4.8: Example of Partition Splitting

Version: 1.0 (Final) Distribution: Public

IST-507802 TALK D:4.4 6th December, 2006 Page 25/34

music

venue

type

restaurant
 food

music

decor

Italian

Jazz

find

entity

food

New matching

subtree
 to

attach to

food

Figure 4.9: Splitting a Partition with a Shared Expansion Node

The detailed implementation of this splitting process needs to consider a number of subtleties. Firstly,
in order to ensure that all partitions are unique, a rule mustbe applied to a node only once. This is
implemented by attaching to each expanded node, a referenceto the rule used to expand it. It is then
simple to check whether or not a rule has been applied before to that node, and if it has, the rule cannot
be applied again. Secondly, when node expansion results in multiple levels of rule application, then new
subtree nodes will be created with probability less than one. In each such case, a new parallel node must
be created to hold theunusedprobability mass. Each new node created in this way creates anew parti-
tion. An example of this is shown in Fig. 4.8 where the expansion of partitionP1:task to give partition
P3:find(venue(type,name,location)) results in an intermediate partitionP2:find(entity) being
created. In the further expansion needed to accommodate theitem (music=Jazz), the expansion of the
type node with probability 0.35 torestaurant would leave a paralleltype node with probability 0.65
and this would form yet another partition.

Finally, as an act item is tested against successive partitions, there may be other partitions which have not
yet been examined but which share the same expansion node. Each of these as yet unexamined partitions,
must be cloned and the expansion node replaced by the leaf nodes of the matching subtree. For example,
in Fig. 4.9, there are two partitions

Px: find(venue(restaurant(food,music,decor)))
Py: find(venue(restaurant(food,music(Jazz),decor)))

If now the itemfood=Italian is matched against Py, then a new partition

Pyy: find(venue(restaurant(food(Italian),music(Jazz),decor)))

is created. However, the expansion nodefood is shared with Px, and hence a further partition

Version: 1.0 (Final) Distribution: Public

IST-507802 TALK D:4.4 6th December, 2006 Page 26/34

State Description
Init initial state
UReq item requested by user
UInf item informed by user
SInf item informed by system
SQry item queried by system
Deny item denied
Grnd item grounded

Table 4.2: Node Grounding States

Pxx: find(venue(restaurant(food(Italian),music,decor)))

must also be created.

4.5 Hypotheses and the Dialog History State

The previous subsections have explained how partitions aregrown as a side effect of attempting to match
dialog act items. Once all input items have been processed and all possible matches made, the next step
is to construct a new set of updated beliefs for the current dialog turn. As indicated by Fig. 4.1, belief
update is implemented by building an explicit list of hypotheses where each hypothesis corresponds to
one possible combination ofp′, a′u ands′d in the left hand side of equation 3.9. At the start of each turn,
each partitionp has attached to it a list of possible dialog state recordssd where each combination{p,sd}
corresponds to a summation term in equation 3.9. At the end ofthe turn, the current hypotheses are
updated by applying the current system dialog act and the assumed user dialog act to the current dialog
history to produce a new updated dialog history.

There are three possible values forP(s′d|p′,a′u,sd,am)

P(s′d|p′,a′u,sd,am) Situation
≈ 1 a consistent history update is possible
≈ 0 some item inp′ has been denied by the user
Pnull no consistent history update is possible

wherePnull >> 0. The idea here is that if the user act appears to be irrelevant to this hypothesis then
the hypothesis belief should not change significantly. However, explicit denial should cause belief to be
reduced to close to zero. Note, however, that since a null actis always included in the list of hypothesised
user acts and since a null act can never fail, recovery is always possible.

The dialog state records information about the dialog history which is relevant to the decision making
process. Each terminal node X in the associated partition has an associated grounding state as shown
in Table 4.2. These states are updated according to the transition diagram shown in Fig. 4.10 where the
generic user and system acts are derived from the actual userand system acts as given in Table 4.3.

Figure 4.11 illustrates hypothesis updating in more detail. In this example, the system had previously out-
putinform(music=Jazz) and the user’s response was eitherrequest(food) ornegate(not.music=Jazz.

Version: 1.0 (Final) Distribution: Public

IST-507802 TALK D:4.4 6th December, 2006 Page 27/34

Grnd Action Dialog Acts
SInf(X) inform(X)
SICon(X) confreq(X,..)
SConf(X) confirm(X), select(X,..), select(..,X)
SOther all other system actions
UInf(X) inform(X), affirm(..,X), negate(X), deny(..,X), reqalt(X)
UReq(X) request(X), request(more.X)
UAff() affirm()
UAff(X) affirm(X)
UDeny() negate(), negate(Y), deny()
UDeny(X) deny(X)
UOther all other dialog actions

Table 4.3: Dialog Act Grouping for Grounding Node X

Init

UInf
 SInf

SQry
 Grnd
 Deny

UIA

(X

)

U
*

UAff
 ()

UIA
(X)

UIA
(X)

UDeny
 (X)

U
D

eny
 ()

U
D

eny
 (X
)

UDeny
 ()

UDeny
 (X)

SInf
(X)

SConf
(X
)

UIA
(X)

MAUVE

ORANGE

BLUE

RED
GREEN

Colours
 refer to

HIS graphic display

SInf
(X)

UReq

SI
nf

(X
)

U
Req
 (X

)

UReq
 (X)

U
IA

(X
)

SC
on

f
(
X)

UIA
(X) =
UInf
(X)|
UAff
(X)

BROWN

UDeny
 (X)

UDeny
 (X)

SIQry

U*

SI
Co

nf

 (

X
)

SIConf

 (X

)

U
Re

q

(X

)

U*

Figure 4.10: Grounding Transition Diagram

Version: 1.0 (Final) Distribution: Public

IST-507802 TALK D:4.4 6th December, 2006 Page 28/34

type

food
 music

Italian
 Jazz

p'

S: inform(music=Jazz)

U: request(food)

S: inform(music=Jazz)

U:deny(music=Jazz)

food:
 SInf
 ->
UReq

music:
Init
 ->
Grnd

food:
 SInf
 ->
UReq

music:
Init
 -> Deny

a
~

u

2

1
a
~

u
a
m

a
m

d
s
1

d
s
2

Figure 4.11: Example Hypotheses

Field Description Size
P(Top) Probability of the most likely hypothesis float
P(Nxt) Probability of the next most likely hypthesisfloat
T12Same true if top two hyps refer to same partition 0-1
TPStatus Status of top partition 0-5
THStatus Status of top hypothesis 0-4
TUserAct Type of user act in top hypothesis 0-12
LastSA Last summary act 0-9

Table 4.4: POMDP Summary State

Previously there was a single dialog history hypothesised for the given fragment of partitionp′ with both
nodes in the “Init” state. After completing the turn, there are two distinct dialog states corresponding to
the two different intepretations of the user input.

4.6 Action Generation

Action generation follows theSummary POMDPscheme outlined in [12], adapted for the HIS model.
Each system responsea′m is the result of a two step process:

1. the current system state is mapped into a reduce summary state, and an appropriate summary action
is determined by a POMDP policy

2. the summary action is mapped into a real action by applyinga number of heuristic rules.

The summary state is shown in Table 4.4 and the summary actions are shown in Table 4.5.

Version: 1.0 (Final) Distribution: Public

IST-507802 TALK D:4.4 6th December, 2006 Page 29/34

Greet Greet the user
BoldRQ Make a bold query request i.e. userequest()
TentRQ Make a tentative query request i.e. useconfreq()
Confirm Confirm an ungrounded node i.e. useconfirm()
Offer Offer a database entity
Inform Give more information about current offer
Split Useselect() to distinguish top 2 hypotheses
FindAlt Find an alternative database entity
QMore Query if user wants any more information
Bye Sign off

Table 4.5: POMDP Summary Actions

4.7 POMDP Training

Policy optimisation in the HIS model utilises a grid-based discretisation of summary belief space and on-
line batchε-greedy policy iteration. Given an existing policyπ, dialogs are executed and machine actions
generated according toπ except that with probabilityε a random action is generated. The system maintains
a set of belief points{b̂i}. At each turn in training, the nearest stored belief pointb̂k to b̂ is located using
a distance measure. If the distance is greater than some threshold, b̂ is added to the set of stored points
and b̂k = b̂. The sequence of pointŝbk traversed in each dialog is stored in a list. Associated witheach
b̂i is a functionQ(b̂i , âm) whose value is the expected total reward obtained by choosing summary action
âm from stateb̂i . At the end of each dialog, the total reward is calculated andadded to an accumulator
for each point in the list, discounted byλ at each step. On completion of a batch of dialogs, theQ values
are updated according to the accumulated rewards, and the policy updated by choosing the action which
maximises eachQ value. The whole process is then repeated until the policy stabilises.

Since even the summary state space is very large, around 105 dialogs are required for policy conver-
gence and learning using real users is not practical. Hence,a user simulation tool is used for training.
This consists of two main components: aUser Goaland aUser Agenda. At the start of each dialogue
the goal is randomly initialised with requests such as “name”, “addr”, “phone” and constraints such as
“type=restaurant”, “food=Chinese”, “pricerange=cheap”. The agenda is subsequently populated with cor-
responding dialogue acts such as “hello”, “request(restaurant)”, “inform(food=Chinese)”, etc. During
the course of the dialogue, the goal ensures that the user behaves in a consistent, goal- directed manner.
The agenda serves as a convenient way of capturing what information the user intends to transmit to the
system, with the top act on the agenda representing the next user actionau.

At every dialogue turn, the user agenda and goal are updated according to the incoming system action
am using a complex set of handcrafted rules. The rules allow theuser to request and provide appropriate
and/or alternative pieces of information, to affirm or negate questions, to select between different options
and to detect and correct misunderstandings. The agenda makes it possible to temporarily store actions
when another action of higher priority needs to be issued first, hence enabling the simulator to refer to
previous dialogue turns at a later point.

To introduce some degree of “life-like” randomness, the user reacts with a varying level of patience and
arbitrary choices are made during the agenda update processwhenever possible. As a result, thousands of

Version: 1.0 (Final) Distribution: Public

IST-507802 TALK D:4.4 6th December, 2006 Page 30/34

-10

-5

0

5

10

15

0
 5
 10
15
20
 25
30
35
40
 45
50
55

x1000 training dialogues

D
ia

lo
g

u
e

P
er

fo
rm

an
ce

Figure 4.12: Average return during policy learning vs number of training dialogs

dialogues can be generated without seeing the same dialoguetwice.

Speech understanding errors are simulated at the dialogue act level. The user action is fed through a
Scramblerwhich generates an N-best list of parsed recognition hypotheses with associated confidence
scores at a given error rate. The confusion matrices for dialogue act types, attributes, and values and
the probability of the correct hypothesis being in the N-best list are read from file. The parameters are
currently handcrafted but could easily be trained on real dialogue data at a later stage.

Each policy iteration uses a batch size of 5000 dialogs, the discount factor is 0.95 andepsilon is held
constant at 0.1. The reward function returns−1 per system turn and+20 if the system recommends a
venue that matches all the constraints in the user’s goal. Inall cases, the initial policy is random.

As a typical example of training, Fig. 4.12 shows the averagereturn achieved by the HIS system at differ-
ing user act error rates when tested against the user simulator as a function of the number of dialogs used
for training. As can be seen learning increases rapidly at first and then asymptotes. At higher error rates,
learning is slower and the asymptotic return reduces.

Version: 1.0 (Final) Distribution: Public

Chapter 5

Evaluation and Conclusions

An evaluation of the prototype HIS system was conducted on the 6/7th November in Cambridge and
Edinburgh.1 The task scenarios involved finding a bar, a restaurant or a hotel in a ficticious town given a
set of constraints (e.g. find a cheap, chinese restaurant in the centre of town). The tasks themselves were
presented to subjects in two different ways: either as a set of images, or as a situation scenario.2 3

Table 5 summarises the outcome of the trial.

Cambridge Edinburgh Combined
#subjects 23 17 40
#dialogues 92 68 160
#turns 676 1240 1916
#words 3294 3373 6667
%WER 21.1 37.3 29.3
#dialogues completed 88 57 145
%completion rate 95.7 83.8 90.6
Avg. turns to completion 3.8 8.1 5.6
Objective metric 91.9 75.6 85.0

Table 5.1: Results of the HIS Dialog System User Trial

There were a total of 40 subjects who performed 4 tasks each. Adialogue was judged to be completed if
the system recommended a venue which matched the user’s constraints. The tasks were defined so that
every task had a solution. As can be seen, the completion ratewas significantly higher in Cambridge
than Edinburgh. This is mostly due to the higher proportion of non-natives in the Edinburgh trial and the
consequent degradation in Word Error Rate (WER) of the recogniser (see 3rd row of the table).

1The assistance of the UEDIN team in helping design the tasks,recruit subjects and run the trial is gratefully
acknowledged.

2The intention was to see how much the presentation of the taskinfluences the choices of words and syntactic
forms used by subjects.

3Due to insufficient development time, the system tested had anumber of technical limitations. In particular,
only the 1-best output from the recogniser was available andthere were known to be bugs in the dialogue grounding
model.

31

IST-507802 TALK D:4.4 6th December, 2006 Page 32/34

The average number of turns to completion was computed as follows. If the correct venue was offered,
the number of turns was taken as the total up to the point of offer. If no correct venue was offered, then
the total turns in the dialogue was used. As can be seen, the higher overall WER and the lower completion
rates at Edinburgh lead to significantly extended dialogues.

The objective metric= R−N whereR= 100 if the dialogue was completed successfully and 0 otherwise.
N is the number of turns. This form of metric is commonly used insystem evaluation and it is similar to
the reward function used to train the POMDP.

In summary, the system as tested was very preliminary and there is a great deal of refinement still to do.
Nevertheless, the results of this trial suggest that the POMDP-based HIS system is viable for building
robust real-world dialogue systems. Across the range of word error rates encountered, an average com-
pletion rate above 90% is considered very respectable. Oncefull N-best handling is incorporated it is
expected that the robustness to errors will improve significantly.

5.1 Conclusions

This report has outlined a new framework called the Hidden Information State (HIS) model for design-
ing and implementing spoken dialog systems. The model is based on the SDS-POMDP but it avoids the
usual computational issues associated with POMDPs by partitioning the space of user goals into a small
number of equivalence classes. Probabilistic context-free ontology rules are used to describe the iterative
splitting of partitions to eventually form unique goal states. By computing beliefs on partitions rather than
the underlying states, belief monitoring remains tractable even for complex real-world systems. POMDP
policy optimisation and response generation uses the Summary POMDP model developed earlier for sim-
ple slot-based systems. The system has been evaluated in a preliminary trial with encouraging results.
A number of problems which arose during the trial have now been fixed, and the system performance is
further improved.

Overall the prototype HIS system implemented in the TALK Project is believed to be the first-ever full-
scale POMDP-based dialogue system. We believe that it represents a major step forwards in designing
dialogue systems which are inherently robust, which can naturally handle uncertainty in recognition output
and which can be trained and adapted automatically on real dialog data.

Version: 1.0 (Final) Distribution: Public

Bibliography

[1] Steve Young, Jason Williams, Jost Schatzmann, Matt Stuttle, and Karl Weilhammer. D4.3: Bayes
Net Prototype - the Hidden Information State Dialogue Manager. Technical report, TALK Project,
2006.

[2] S Larsson and D Traum. Information State and Dialogue Management in the TRINDI Dialogue
Move Engine Toolkit.Natural Language Engineering, pages 323–340, 2000.

[3] SJ Young. Talking to Machines (Statistically Speaking). In Int Conf Spoken Language Processing,
Denver, Colorado, 2002.

[4] Oliver Lemon, Kallirroi Georgila, James Henderson, Malte Gabsdil, Ivan Meza-Ruiz, and Steve
Young. D4.1: Integration of Learning and Adaptivity with the ISU approach. Technical report,
TALK Project, 2005.

[5] E Levin, R Pieraccini, and W Eckert. A Stochastic Model ofHuman-Machine Interaction for Learn-
ing Dialog Strategies.IEEE Trans Speech and Audio Processing, 8(1):11–23, 2000.

[6] Oliver Lemon, Kallirroi Georgila, and Matthew Stuttle.D4.2: Showcase exhibiting Reinforcement
Learning for dialogue strategies in the in-car domain. Technical report, TALK Project, 2005.

[7] Oliver Lemon, Kallirroi Georgila, James Henderson, andMatthew Stuttle. An ISU dialogue sys-
tem exhibiting reinforcement learning of dialogue policies: generic slot-filling in the TALK in-car
system. InProceedings of EACL, 2006.

[8] LP Kaelbling, ML Littman, and AR Cassandra. Planning andActing in Partially Observable Stochas-
tic Domains.Artificial Intelligence, 101:99–134, 1998.

[9] JD Williams, P Poupart, and SJ Young. Factored PartiallyObservable Markov Decision Processes
for Dialogue Management. In4th Workshop on Knowledge and Reasoning in Practical Dialogue
Systems, Edinburgh, 2005.

[10] JD Williams, P Poupart, and SJ Young. Partially Observable Markov Decision Processes with Con-
tinuous Observations for Dialogue Management. In6th SIGdial Workshop on DISCOURSE and
DIALOGUE, Lisbon, 2005.

[11] ML Littman. The Witness Algorithm: solving partially observable Markov decision processes.
Technical report, Brown University, 1994.

33

IST-507802 TALK D:4.4 6th December, 2006 Page 34/34

[12] JD Williams and SJ Young. Scaling up POMDPs for DialogueManagement: the Summary POMDP
Method. In IEEE workshop on Automatic Speech Recognition and Understanding (ASRU2005),
Puerto Rico, 2005.

[13] B Zhang, Q Cai, J Mao, and B Guo. Planning and Acting underUncertainty: A New Model for
Spoken Dialogue System. InProc 17th Conf on Uncertainty in AI, Seattle, 2001.

[14] MTJ Spaan and N Vlassis. Perseus: randomized point-based value iteration for POMDPs. Technical
report, Universiteit van Amsterdam, 2004.

[15] S Singh, DJ Litman, M Kearns, and M Walker. Optimizing Dialogue Management with Reinforce-
ment Learning: Experiments with the NJFun System.J Artificial Intelligence Research, 16:105–133,
2002.

[16] K Scheffler and SJ Young. Automatic Learning of DialogueStrategy using Dialogue Simulation and
Reinforcement Learning. InHLT 2002, San Diego, USA, 2002.

[17] AW Moore and CG Atkeson. The Parti-game Algorithm for Variable Resolution Reinforcement
Learning in Multidimensional State-spaces. In SJ Hanson, JD Cowan, and CL Gi, editors,Advances
in Neural Information Processing Systems. Morgan Kaufmann, 1994.

[18] AK McCallum. Reinforcement Learning with Selective Perception and Hidden State. PhD thesis,
University of Rochester, 1995.

[19] WTB Uther and MM Veluso. Tree Based Discretization for Continuous State Space Reinforcement
Learning. InProceedings of the Fifteenth National Conference on Artificial Intelligence, pages 769–
775, 1998.

[20] MJ Kochenderfer and G Hayes. Adaptive Partitioning of State Spaces using Decision Graphs for
Real-Time Modeling and Planning. InWorkshop on Planning and Learning in A Priori Unknown or
Dynamic Domains, IJCAI-05, Edinburgh, 2005.

[21] R Jaulmes, J Pineau, and D Precup. Active Learning in Partially Observable Markov Decision
Processes. InEuropean Conference on Machine Learning (ECML), Porto, Portugal, 2005.

[22] RS Sutton and AG Barto.Reinforcement Learning: An Introduction. Adaptive Computation and
Machine Learning. MIT Press, Cambridge, Mass, 1998.

[23] JD Williams. Partially Observable Markov Decision Processes for SpokenDialogue Management.
PhD thesis, Cambridge University, 2006.

Version: 1.0 (Final) Distribution: Public

